SALT ver 4.5 measurement loogbook

Miroslaw Firlej, Tomasz Fiutowski, Marek Idzik, Jakub Moron, Krzysztof Swientek

Created: June 2018

Last change: July 6, 2018

Contents

Co	onten	ts	1
1	Mea 1.1 1.2 1.3	SALT registers configuration	7 7 8 8
2	Boa 2.1 2.2 2.3 2.4 2.5	rd 0 with ASIC 0 I Before input pads bonded I Cap-PCB bonded, 12 pF capacitors assembled I Cap-PCB bonded, capacitors removed I Cap-PCB bonded, 12 pF capacitors re-assembled I Cap-PCB bonded, 12 pF capacitors re-assembled I 2.4.1 Channel -1, krum_cfg='h00 I Input bonds completely removed I I	10 11 12 13 15 16
3	Boa 3.1 3.2 3.3 3.4	rd 1 with ASIC 1 I Before input pads bonded I Dummy bond on input pads I Cap-PCB bonded, no capacitors assembled I 3.3.1 Default ASIC configuration I 3.3.2 Optimized test pulse and ADC delay I Cap-PCB bonded, 2.2 pF capacitors assembled I 3.4.1 Default ASIC configuration I	17 117 118 119 119 220 222 222
	3.5	3.4.2 Optimized test pulse and ADC delay	23 25 25 26

	3.6	Cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors assembled 2
		3.6.1 Default ASIC configuration
		3.6.2 Optimized test pulse and ADC delay
	3.7	Cap-PCB bonded, 12 pF capacitors $+$ 620 k Ω resistors assembled; Ibuf
		current maximized
		3.7.1 Default ASIC configuration
		3.7.2 Optimized test pulse and ADC delay
	3.8	Cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf
		current maximized
		3.8.1 Default ASIC configuration
		3.8.2 Optimized test pulse and ADC delay
	3.9	Cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf
		current maximized; Preamp GND configuration – input + backside 3
		3.9.1 Default ASIC configuration
		3.9.2 Optimized test pulse and ADC delay
	3.10	DLL and PLL stability monitoring
4	Boa	rd 0 with ASIC 2 4
	4.1	Input bonds completely removed from channel -1
		4.1.1 Default ASIC configuration
		4.1.2 Optimized test pulse and ADC delay 4
	4.2	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized . 4
		4.2.1 Default ASIC configuration
		4.2.2 Optimized test pulse and ADC delay
	4.3	Cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf
		current maximized
		4.3.1 Default ASIC configuration
		4.3.2 Optimized test pulse and ADC delay
	4.4	Cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibut
		current maximized; ADC power supply with 2.2 Ω series resistor 4
		4.4.1 Default ASIC configuration
		4.4.2 Optimized test pulse and ADC delay
	4.5	Cap-PCB bonded, 12 pF capacitors $+$ 820 kM resistors assembled; Ibut
		current maximized; ADC power supply with 1 μ H series inductor 4
		4.5.1 Default ASIC configuration
	1.0	4.5.2 Optimized test pulse and ADC delay
	4.0	Cap-PCB bonded, no capacitors assembled; Ibuf current maximized; ADC
		power supply with 1 μ H series inductor
		4.6.1 Default ASIC configuration
		4.6.2 Optimized test pulse and ADC delay
	4.7	Cap-PCB bonded, no capacitors assembled; Ibut current maximized; ADC
		power supply with 1 μ H series inductor; floating copper foil on ASIC 5
		4.7.1 Default ASIC configuration
		4.7.2 Optimized test pulse and ADC delay

4.8	Cap-PCB bonded, 12 pF capacitors assembled: Ibuf current maximized:	
	ADC power supply with 1 μ H series inductor: floating copper foil on ASIC 4	55
	4.8.1 Default ASIC configuration	55
	4.8.2 Optimized test pulse and ADC delay	55
49	Cap-PCB bonded 12 pE capacitors assembled: Ibuf current maximized:	00
1.0	ADC nower supply with 1 <i>u</i> H series inductor: floating copper fail on	
	ASIC: Prosmp CND configuration input $+$ backside	57
	$4.0.1$ Default ASIC configuration input \pm backside \ldots \ldots \ldots	57
	4.9.1 Default ASIC configuration	57 57
1 10	4.9.2 Optimized test pulse and ADC delay	57
4.10	ADC normal supply with 1 will series inductors grounded compar feil on	
	ADC power supply with 1 μ H series inductor; grounded copper ion on	50
	ASIC; Preamp GND configuration – input + backside \dots	59 50
	4.10.1 Default ASIC configuration	59 50
	4.10.2 Optimized test pulse and ADC delay	59
4.11	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	ALL power supply with 1 μ H series inductor; grounded copper foil on	0.4
	ASIC; Preamp GND configuration – input + backside	61
	4.11.1 Default ASIC configuration	61
	4.11.2 Optimized test pulse and ADC delay	61
	4.11.3 ASIC response for EMI source	62
4.12	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	ALL power supply with 1 μ H series inductor; grounded copper foil on	
	ASIC; Preamp GND configuration – only backside	64
	4.12.1 ASIC response for EMI source	64
4.13	S2D response for different sampling frequencies	65
	4.13.1 Response at 1 MHz at full activity with 12 pF + 820 k Ω at input	65
	4.13.2 Response at 1 MHz at full activity with 0 pF; floating copper foil	
	on ASIC	67
	4.13.3 Response at 1 MHz at full activity with 12 pF; grounded copper	
	foil on ASIC; Preamp GND configuration – input + backside. \therefore	70
D		70
Boal		1 Z
5.1	S2D response for different sampling frequencies	72 70
	5.1.1 Response at 1 MHz at full activity without input pads bonded	72
	5.1.2 Response at 1 MHz at full activity with 12 pF at input	15
	5.1.3 Response at 1 MHz at full activity with 12 pF at input; preamp	-
	GND configuration – input + backside	78
	5.1.4 Response vs main clock frequency without input pads bonded	81
	5.1.5 Response at I MHz vs activity without input pads bonded	81
5.2	Before input pads bonded	82
	5.2.1 Default ASIC configuration	82
-	5.2.2 Optimized test pulse and ADC delay	83
5.3	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized .	84
	5.3.1 Default ASIC configuration	84

	5.3.2 Optimized test pulse and ADC delay	85
5.4	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	Fsmp=33 MHz	87
	5.4.1 Default ASIC configuration	87
	5.4.2 Optimized test pulse and ADC delay	87
5.5	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	Preamp GND configuration – input + backside	89
	5.5.1 Default ASIC configuration	89
	5.5.2 Optimized test pulse and ADC delay	90
5.6	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	Preamp GND configuration – only input	92
	5.6.1 Default ASIC configuration	92
	5.6.2 Optimized test pulse and ADC delay	93
5.7	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	floating copper foil on ASIC; Preamp GND configuration – only input	95
	5.7.1 Default ASIC configuration	95
	5.7.2 Optimized test pulse and ADC delay	96
5.8	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	floating copper foil on ASIC; Preamp GND configuration – input + backside	98
	5.8.1 Default ASIC configuration	98
	5.8.2 Optimized test pulse and ADC delay	99
5.9	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	floating copper foil on ASIC; Preamp GND configuration – only backside	101
	5.9.1 Default ASIC configuration	101
	5.9.2 Optimized test pulse and ADC delay	101
5.10	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	floating copper foil on ASIC; All inputs grounded; Preamp GND config-	
	uration – only backside	103
	5.10.1 Default ASIC configuration	103
- 11	5.10.2 Optimized test pulse and ADC delay	104
5.11	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
	floating small horizontal copper foil on ASIC; All inputs grounded; Preamp	100
	GND configuration – only backside	106
	5.11.1 Default ASIC configuration	106
F 10	5.11.2 Optimized test pulse and ADC delay	107
5.12	Cap-PCB bonded, 12 pF capacitors assembled; Ibut current maximized;	
	floating small horizontal copper foil on ASIC; Preamp GND configuration	100
		109
	5.12.1 Default ASIC configuration	110
F 10	0.12.2 Optimized test pulse and ADU delay	110
5.13	Cap-rOB bonded, 12 pr capacitors assembled; Ibut current maximized;	110
		112

6	Boa	rd 1 with ASIC 5	114
	6.1	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized .	114
		6.1.1 Default ASIC configuration	114
		6.1.2 Optimized test pulse and ADC delay	115
		6.1.3 ASIC response for EMI source	117
	6.2	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
		Preamp GND configuration – input + backside	122
		6.2.1 ASIC response for EMI source	122
	6.3	Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized;	
		Preamp GND configuration – only input	124
		6.3.1 ASIC response for EMI source	124
7	ASI	Cs history	126
8	Vari	ous issues	128
	8.1	Bonding issue at AGH-UST	128
	8.2	Copper foil on ASIC B0A2 and 1 μ H inductor assembly	131
	8.3	Copper foil on ASIC B1A4	132
	8.4	EMI source over ASIC B0A2	135
Lis	st of	Figures	136

Documentation Conventions

To aid the readers understanding, a consistent formatting style has been used throughout this manual.

- Internal signals are written using *italic* font.
- External connections names (pads) like supplies use CAPITAL LETTERS only.
- External signals names, however, are in capital letters but using *ITALIC* font also.
- Configuration elements like register names are written in sans serif font.
- Signals controlled by configuration bits use *slanted sans serif* font.

For numbers the Verilog prefix style is used:

- 'b for binary numbers e.g 'b1010,
- 'h for hexadecimal numbers e.g 'hA7,
- 'd for decimal numbers e.g 'd72,
- no prefix means that the number is in decimal notation.

Some C style prefixes 0x for hexadecimal numbers may also appear in this document.

1 Measurements setup

1.1 SALT registers configuration

Table 1: Base configuration (from JC); DLL VCDL setting is different in each chip

Addr	Value	Comment
'h004	'h8C	PLL on
'h006	'h12	PLL VCO='h12
'h004	'hCC	PLL connected
'h000	'h22	pattern register to output
'h001	'hF0	pattern value='hF0
'h008	'h00	$ser_byte_start=0$
'h300	'h0C	DLL not connected and started, HLP inactive; test and monitors off
'h301	??	DLL VCDL=?? (see table 4)
'h300	'h4C	DLL not connected, started, HLP inactive; test and monitors off
'h300	'h6C	DLL connected, started, HLP inactive; test and monitors off
'h002	'h1F	deser_cfg: deser_byte_start=7; data_clk_sel[1:0]=2'b11
'h003	'h3B	$pll_clk_cfg: sel[1]=3; sel[0]='hB$
h507	'h01	idle group size=1

Table 2: Test pulse configuration (from JC)

Addr Va	alue	Comment
'h300 'h	nE4	DLL active, test channels on
'h305 'h	n9F	Calib inverted, pulse_len 'h1F='d31 (max)
'h306 'h	n3F	Calib volt='h3F
'h007 'l	h07	tfc_fifo_len='h07
'h303 'l	h63	adc_clk_sel='h23
'h104 'l	h80	adc_sync_sel=1 (DSP input synchronization)
'h203 'h	n0C	shaper_dac='h0C
'h201 'h	n0F	preamp_dac='h0F
'h31B 'ł	h15	vcm_cur='h15

Table 3: Calibration and ADC delay optimizations

Addr	Value	Comment
'h305	'hE4	Calib not inverted, pulse_len 'h1F='d31 (max)
'h306	'h9F	Calib volt='h00
'h200	'h07	ADC delay='d7

1.2 DLL dll_vcdl_cfg register optimal value for different ASICs

Optimum value of dll_vcdl_cfg was obtained from DLL configuration procedure described in the SALT documentation. The procedure have to be repeated for each particular ASIC.

ASIC version	dll_vcdl_cfg
ASIC 0	_
ASIC 1	'h31
ASIC 2	'h2F
ASIC 3	_
ASIC 4	'h28
ASIC 5	$^{ m h2B}$

Table 4: Optimal dll_vcdl_cfg register value

For ASIC 0 a suboptimal value 'h23 was used, which caused some DLL instabilities.

1.3 Input capacitance assembly

Input capacitance assembly is shown on Figure 1 – small PCB (hereinafter referred as cap-PCB) glued in front of SALT ASIC. The cap-PCB contains two signal bondpads (top right and bottom right), the center bondpad, common for both capacitors, bonded directly to the ASIC ground pad on main PCB, and two capacitors soldered (on the left). The signal bondpads of cap-PCB are boned to the inputs 0 and 127 on SALT ASIC (connected to the test channels 0 and 1, referred hereinafter as channels -1 and 128).

Figure 1: Input capacitance assembly

2 Board 0 with ASIC 0

No quantitative measurements done, only some result which may be partial or incomplete.

2.1 Before input pads bonded

ASIC configuration: default values after reset. No results for channel 128 before bonding.

Figure 2: B0A0, channel -1, before bonding. Parameter=no. of active ADCs

2.2 Cap-PCB bonded, 12 pF capacitors assembled

ASIC configuration: default values after reset.

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors soldered to the cap-PCB.

Short on cap-PCB found, this result is irrelevant.

Figure 3: B0A0, channel -1, cap-PCB bonded, 12 pF capacitors assembled. Parameter=no. of active ADCs

Figure 4: B0A0, channel 128, cap-PCB bonded, 12 pF capacitors assembled, no data for oscillations. Parameter=no. of active ADCs

2.3 Cap-PCB bonded, capacitors removed

ASIC configuration: default values after reset.

Cap-PCB assembled, bonded to SALT input pads 0 and 127. Capacitors removed from cap-PCB.

Short on cap-PCB found, this result is irrelevant.

Figure 5: B0A0, channel -1, cap-PCB bonded, capacitors removed. Parameter=no. of active ADCs

Figure 6: B0A0, channel 128, cap-PCB bonded, capacitors removed. Parameter=no. of active ADCs

2.4 Cap-PCB bonded, 12 pF capacitors re-assembled

ASIC configuration: default values after reset.

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors re-assembled to the cap-PCB.

Short on cap-PCB found, this result is irrelevant.

Figure 7: B0A0, channel -1, cap-PCB bonded, 12 pF capacitors re-assembled. Parameter=no. of active ADCs

Figure 8: B0A0, channel 128, cap-PCB bonded, 12 pF capacitors re-assembled. Parameter=no. of active ADCs

2.4.1 Channel -1, krum_cfg='h00

m 1 1

ASIC configuration: default values after reset + Krummenacher DAC set to zero (see table 5). Only channel -1 measured.

	Table 5: Krummenacher current set to zero	
ne	Comment	

Addr	Value	Comment
'h202	'h80	Low gain=1, krum_cfg=0

Short on cap-PCB found, this result is irrelevant.

Figure 9: B0A0, channel -1, cap-PCB bonded, 12 pF capacitors re-assembled, krum_cfg='h00. Parameter=no. of active ADCs

2.5 Input bonds completely removed

ASIC configuration: default values after reset.

Cap-PCB assembled, bonds between cap-PCB and SALT inputs removed.

Figure 10: B0A0, channel -1, input bonds completely removed. Parameter=no. of active ADCs

Figure 11: B0A0, channel 128, input bonds completely removed. Parameter=no. of active ADCs

3 Board 1 with ASIC 1

3.1 Before input pads bonded

Figure 12: B1A1, channel -1, before bonding. Parameter=no. of active ADCs

Figure 13: B1A1, channel 128, before bonding. Parameter=no. of active ADCs

3.2 Dummy bond on input pads

ASIC configuration: JC configuration (tables 1 & 2). Wirebonds bonded to the SALT input pads 0 and 128 and cut off (second side not bonded anywhere). As a result each pad has dangling wirebond connected to it.

Figure 14: B1A1, channel -1, dummy bond. Parameter=no. of active ADCs

Figure 15: B1A1, channel 128, dummy bond. Parameter=no. of active ADCs

3.3 Cap-PCB bonded, no capacitors assembled

Empty Cap-PCB assembled, bonded to SALT input pads 0 and 127 (no capacitors assembled to the cap-PCB).

3.3.1 Default ASIC configuration

Figure 16: B1A1, channel -1, Empty cap-PCB bonded. Parameter=no. of active ADCs

Figure 17: B1A1, channel 128, Empty cap-PCB bonded. Parameter=no. of active ADCs

3.3.2 Optimized test pulse and ADC delay

Figure 18: B1A1, channel -1, Empty cap-PCB bonded. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 19: B1A1, channel 128, Empty cap-PCB bonded. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

3.4 Cap-PCB bonded, 2.2 pF capacitors assembled

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 2.2 pF capacitors assembled to the cap-PCB.

3.4.1 Default ASIC configuration

Figure 20: B1A1, channel -1, cap-PCB bonded, 2.2 pF capacitors assembled. Parameter=no. of active ADCs

Figure 21: B1A1, channel 128, cap-PCB bonded, 2.2 pF capacitors assembled. Parameter=no. of active ADCs

3.4.2 Optimized test pulse and ADC delay

Figure 22: B1A1, channel -1, cap-PCB bonded, 2.2 pF capacitors assembled. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 23: B1A1, channel 128, cap-PCB bonded, 2.2 pF capacitors assembled. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

3.5 Cap-PCB bonded, 12 pF capacitors assembled

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

3.5.1 Default ASIC configuration

Figure 24: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors assembled. Parameter=no. of active ADCs

Figure 25: B1A1, channel 128, cap-PCB bonded, 12 pF capacitors assembled. Parameter=no. of active ADCs

3.5.2 Optimized test pulse and ADC delay

Figure 26: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors assembled. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 27: B1A1, channel 128, cap-PCB bonded, 12 pF capacitors assembled. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

3.6 Cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors assembled

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB, 620 k Ω resistors soldered in parallel to the capacitors. Only channel -1 measured.

3.6.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 28: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors assembled. Parameter=no. of active ADCs

3.6.2 Optimized test pulse and ADC delay

Figure 29: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors assembled. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

3.7 Cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors assembled; Ibuf current maximized

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB, 620 k Ω resistors soldered in parallel to the capacitors. Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad. Only channel -1 measured.

3.7.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 30: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors assembled; Ibuf current maximized. Parameter=no. of active ADCs

3.7.2 Optimized test pulse and ADC delay

Figure 31: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors assembled; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

3.8 Cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB, 820 k Ω resistors soldered in parallel to the capacitors. Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad. Only channel -1 measured.

3.8.1 Default ASIC configuration

Figure 32: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized. Parameter=no. of active ADCs

Figure 33: B1A1, channel 128, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized. Parameter=no. of active ADCs

3.8.2 Optimized test pulse and ADC delay

Figure 34: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 35: B1A1, channel 128, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

3.9 Cap-PCB bonded, **12** pF capacitors + **820** kΩ resistors assembled; Ibuf current maximized; Preamp GND configuration – input + backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB, 820 k Ω resistors soldered in parallel to the capacitors. Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

Preamp GND bonded from both sides - input pads + backside (default) pads. Only channel -1 measured.

3.9.1 Default ASIC configuration

Figure 36: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

Figure 37: B1A1, channel 128, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

3.9.2 Optimized test pulse and ADC delay

Figure 38: B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 820 kΩ resistors assembled; Ibuf current maximized; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 39: B1A1, channel 128, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs
3.10 DLL and PLL stability monitoring

ASIC configuration: JC configuration (tables 1 & 2).

Figure 40: B1A1, DLL & PLL stability monitoring (one night); HLP active; only one PLL monitor red

Figure 41: B1A1, DLL & PLL stability monitoring (a weekend); HLP active

Figure 42: B1A1, DLL & PLL stability monitoring (four days); HLP inactive

Figure 43: B1A1, DLL & PLL stability monitoring (two days); HLP active, DLL CP current lowered to 'h4

4 Board 0 with ASIC 2

Cap-PCB initially bonded with 12 pF, however a short was found on cap-PCB by removing bond from channel -1. Therefore the first results are done for channel -1 with bond removed.

4.1 Input bonds completely removed from channel -1

Cap-PCB assembled, bond to SALT input pad 0 removed, two 12 pF capacitors assembled to the cap-PCB.

4.1.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 44: B0A2, channel -1, input bond removed from channel -1. Parameter=no. of active ADCs

4.1.2 Optimized test pulse and ADC delay

Figure 45: B0A2, channel -1, input bond removed from channel -1. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.2 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad. Channel 128 have damaged input.

4.2.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 46: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Parameter=no. of active ADCs

4.2.2 Optimized test pulse and ADC delay

Figure 47: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.3 Cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB, 820 k Ω resistors soldered in parallel to the capacitors. Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad. Channel 128 have damaged input.

4.3.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 48: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor assembled; Ibuf current maximized. Parameter=no. of active ADCs

4.3.2 Optimized test pulse and ADC delay

Figure 49: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor assembled; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.4 Cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized; ADC power supply with 2.2 Ω series resistor

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB, 820 k Ω resistors soldered in parallel to the capacitors. Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

 $2.2~\Omega$ resistor assembled in series between on board decoupling power supply capacitors and VDDADC + VREFD bonds.

Channel 128 have damaged input.

4.4.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 50: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor assembled; Ibuf current maximized; ADC power supply with 2.2 Ω series resistor. Parameter=no. of active ADCs

4.4.2 Optimized test pulse and ADC delay

Figure 51: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor assembled; Ibuf current maximized; ADC power supply with 2.2 Ω series resistor. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.5 Cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB, 820 k Ω resistors soldered in parallel to the capacitors. Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

 $1~\mu{\rm H}$ inductor assembled in series between on board decoupling power supply capacitors and VDDADC + VREFD bonds.

Channel 128 have damaged input.

4.5.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 52: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor. Parameter=no. of active ADCs

4.5.2 Optimized test pulse and ADC delay

Figure 53: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor assembled; Ibuf current maximized; ADC power supply with 1 $\mu\rm H$ series inductor. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.6 Cap-PCB bonded, no capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor

Cap-PCB assembled, bonded to SALT input pads 0 and 127, no capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

 $1~\mu{\rm H}$ inductor assembled in series between on board decoupling power supply capacitors and VDDADC + VREFD bonds.

Channel 128 have damaged input.

4.6.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 54: B0A2, channel -1, cap-PCB bonded, no capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor. Parameter=no. of active ADCs

4.6.2 Optimized test pulse and ADC delay

Figure 55: B0A2, channel -1, cap-PCB bonded, no capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.7 Cap-PCB bonded, no capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; floating copper foil on ASIC

Cap-PCB assembled, bonded to SALT input pads 0 and 127, no capacitors assembled to the cap-PCB.

Ibuf current maximized $-1 \ k\Omega$ resistor between VDDA and Ibuf pad.

1 μ H inductor assembled in series between onboard decoupling power supply capacitors and VDDADC + VREFD bonds.

Floating copper foil glued directly on passivation on top of the ASIC (see figure 149). Channel 128 have damaged input.

4.7.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 56: B0A2, channel -1, cap-PCB bonded, no capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; floating copper foil on ASIC. Parameter=no. of active ADCs

4.7.2 Optimized test pulse and ADC delay

Figure 57: B0A2, channel -1, cap-PCB bonded, no capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; floating copper foil on ASIC. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.8 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; floating copper foil on ASIC

Cap-PCB assembled, bonded to SALT input pads 0 and 127, no capacitors assembled to the cap-PCB.

Ibuf current maximized $-1 \ k\Omega$ resistor between VDDA and Ibuf pad.

 $1~\mu\mathrm{H}$ inductor assembled in series between onboard decoupling power supply capacitors and VDDADC + VREFD bonds.

Floating copper foil glued directly on passivation on top of the ASIC (see figure 149). Channel 128 have damaged input.

4.8.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 58: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; floating copper foil on ASIC. Parameter=no. of active ADCs

4.8.2 Optimized test pulse and ADC delay

Figure 59: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; floating copper foil on ASIC. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.9 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; floating copper foil on ASIC; Preamp GND configuration – input + backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

1 μ H inductor assembled in series between onboard decoupling power supply capacitors and VDDADC + VREFD bonds.

Floating copper foil glued directly on passivation on top of the ASIC (see figure 149). Preamp GND bonded from both sides - input pads + backside (default) pads. Channel 128 have damaged input.

4.9.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 60: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μH series inductor; floating copper foil on ASIC; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

4.9.2 Optimized test pulse and ADC delay

Figure 61: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μH series inductor; floating copper foil on ASIC; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.10 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; grounded copper foil on ASIC; Preamp GND configuration – input + backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, no capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

1 μ H inductor assembled in series between onboard decoupling power supply capacitors and VDDADC + VREFD bonds.

Grounded copper foil glued directly on passivation on top of the ASIC.

Preamp GND bonded from both sides - input pads + backside (default) pads. Channel 128 have damaged input.

4.10.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 62: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μ H series inductor; grounded copper foil on ASIC; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

4.10.2 Optimized test pulse and ADC delay

Figure 63: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ADC power supply with 1 μH series inductor; grounded copper foil on ASIC; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.11 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ALL power supply with 1 μ H series inductor; grounded copper foil on ASIC; Preamp GND configuration – input + backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, no capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

 $1~\mu\mathrm{H}$ inductor assembled in series between on board decoupling power supply capacitors and all VDD bonds.

Grounded copper foil glued directly on passivation on top of the ASIC.

Preamp GND bonded from both sides - input pads + backside (default) pads. Channel 128 have damaged input.

4.11.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 64: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ALL power supply with 1 μH series inductor; grounded copper foil on ASIC; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

4.11.2 Optimized test pulse and ADC delay

Figure 65: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ALL power supply with 1 μH series inductor; grounded copper foil on ASIC; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

4.11.3 ASIC response for EMI source

ASIC configuration: default (chip after reset), EMI source 152 1cm over the ASIC.

Figure 66: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ALL power supply with 1 μ H series inductor; grounded copper foil on ASIC; Preamp GND configuration – input + backside. EMI source amplitude 100mV. Parameter=frequency of EMI source

4.12 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ALL power supply with 1 μ H series inductor; grounded copper foil on ASIC; Preamp GND configuration – only backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, no capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

 $1~\mu\mathrm{H}$ inductor assembled in series between on board decoupling power supply capacitors and all VDD bonds.

Grounded copper foil glued directly on passivation on top of the ASIC.

Preamp GND bonded only from backside (default) pads.

Channel 128 have damaged input.

4.12.1 ASIC response for EMI source

ASIC configuration: default (chip after reset), EMI source 152 1cm over the ASIC.

Figure 67: B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; ALL power supply with 1 μH series inductor; grounded copper foil on ASIC; Preamp GND configuration – only backside. EMI source amplitude 100mV. Parameter=frequency of EMI source

4.13 S2D response for different sampling frequencies

 $1~\mu{\rm H}$ inductor assembled in series between on board decoupling power supply capacitors and VDDADC + VREFD bonds.

Channel 128 S2D output shown (yellow trace) with sampling clock (purple trace). Scope triggered on sampling clock; averaging active.

ASIC configuration - default after reset.

4.13.1 Response at 1 MHz at full activity with 12 pF + 820 k Ω at input

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB, 820 k Ω resistors soldered in parallel to the capacitors.

Figure 68: B0A2, S2D response at 1 MHz of main clock. Rising edge corresponds to the ADC conversion. 12 pF + 820 k Ω at input.

Figure 69: B0A2, Amplitude of S2D response at 1 MHz. 12 pF + 820 k Ω at input.

Figure 70: B0A2, Time structure of S2D response at 1 MHz. 12 pF + 820 k Ω at input.

4.13.2 Response at 1 MHz at full activity with 0 pF; floating copper foil on ASIC

Cap-PCB assembled, bonded to SALT input pads 0 and 127, no capacitors assembled to the cap-PCB.

Floating copper foil glued directly on passivation on top of the ASIC (see figure 149).

Figure 71: B0A2, S2D response at 1 MHz of main clock. Rising edge corresponds to the ADC conversion. 0 pF; floating plane on passivation.

Figure 72: B0A2, Amplitude of S2D response at 1 MHz. 0 pF; floating plane on passivation.

Figure 73: B0A2, Time structure of S2D response at 1 MHz. 0 pF; floating plane on passivation.

4.13.3 Response at 1 MHz at full activity with 12 pF; grounded copper foil on ASIC; Preamp GND configuration – input + backside.

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Grounded copper foil glued directly on passivation on top of the ASIC (see figure 149). Preamp GND bonded from both sides - input pads + backside (default) pads.

Figure 74: B0A2, S2D response at 1 MHz of main clock. Rising edge corresponds to the ADC conversion. 12 pF; grounded plane on passivation; Preamp GND configuration – input + backside.

Figure 75: B0A2, Amplitude of S2D response at 1 MHz. 12 pF; grounded plane on passivation; Preamp GND configuration – input + backside.

5 Board 1 with ASIC 4

5.1 S2D response for different sampling frequencies

Channel 128 S2D output shown (yellow trace) with sampling clock (purple trace). Scope triggered on sampling clock; averaging active. ASIC configuration - default after reset.

5.1.1 Response at 1 MHz at full activity without input pads bonded

Input pads not bonded.

Figure 76: B1A4, S2D response at 1 MHz of main clock. Rising edge corresponds to the ADC conversion. Input pads not bonded.

Figure 77: B1A4, Amplitude of S2D response at 1 MHz. Input pads not bonded.

Figure 78: B1A4, Time structure of S2D response at 1 MHz. Input pads not bonded.

5.1.2 Response at 1 MHz at full activity with 12 pF at input

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Figure 79: B1A4, S2D response at 1 MHz of main clock. Rising edge corresponds to the ADC conversion. 12 pF at inputs.

Figure 80: B1A4, Amplitude of S2D response at 1 MHz. 12 pF at inputs.

Figure 81: B1A4, Time structure of S2D response at 1 MHz. 12 pF at inputs.

5.1.3 Response at 1 MHz at full activity with 12 pF at input; preamp GND configuration – input + backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Preamp GND configuration – input + backside

Figure 82: B1A4, S2D response at 1 MHz of main clock. Rising edge corresponds to the ADC conversion. 12 pF at inputs. Preamp GND – input + backside

Figure 83: B1A4, Amplitude of S2D response at 1 MHz. 12 pF at inputs. Preamp GND - input + backside

Figure 84: B1A4, Time structure of S2D response at 1 MHz. 12 pF at inputs. Preamp ${\rm GND-input}$ + backside

5.1.4 Response vs main clock frequency without input pads bonded

5.1.5 Response at 1 MHz vs activity without input pads bonded

5.2 Before input pads bonded

5.2.1 Default ASIC configuration

Figure 85: B1A4, channel -1, Before input pads bonded. Parameter=no. of active ADCs

Figure 86: B1A4, channel 128, Before input pads bonded. Parameter=no. of active ADCs $\,$

5.2.2 Optimized test pulse and ADC delay

Figure 87: B1A4, channel -1, Before input pads bonded. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 88: B1A4, channel 128, Before input pads bonded. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.3 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

5.3.1 Default ASIC configuration

Figure 89: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Parameter=no. of active ADCs

Figure 90: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Parameter=no. of active ADCs

5.3.2 Optimized test pulse and ADC delay

Figure 91: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 92: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.4 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; Fsmp=33 MHz

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB. Ibuf current maximized $-1 \ k\Omega$ resistor between VDDA and Ibuf pad. Main clock (ADC sampling) frequency = 33 MHz.

Only channel 128 measured.

5.4.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 93: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Fsmp=33 MHz. Parameter=no. of active ADCs

5.4.2 Optimized test pulse and ADC delay

Figure 94: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Fsmp=33 MHz. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.5 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; Preamp GND configuration – input + backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

Preamp GND bonded from both sides - input pads + backside (default) pads.

5.5.1 Default ASIC configuration

Figure 95: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

Figure 96: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

5.5.2 Optimized test pulse and ADC delay

Figure 97: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 98: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.6 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; Preamp GND configuration – only input

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad. Preamp GND bonded only using input pads.

5.6.1 Default ASIC configuration

Figure 99: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Preamp GND configuration – only input. Parameter=no. of active ADCs

Figure 100: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Preamp GND configuration – only input. Parameter=no. of active ADCs

5.6.2 Optimized test pulse and ADC delay

Figure 101: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Preamp GND configuration – only input. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 102: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; Preamp GND configuration – only input. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.7 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only input

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

Floating copper foil glued directly on passivation on top of the ASIC (see figure 149). Preamp GND bonded only using input pads.

5.7.1 Default ASIC configuration

Figure 103: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only input. Parameter=no. of active ADCs

Figure 104: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only input. Parameter=no. of active ADCs

5.7.2 Optimized test pulse and ADC delay

Figure 105: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only input. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 106: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only input. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.8 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – input + backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

Floating copper foil glued directly on passivation on top of the ASIC (see figure 149). Preamp GND bonded from both sides - input pads + backside (default) pads.

5.8.1 Default ASIC configuration

Figure 107: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

Figure 108: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – input + backside. Parameter=no. of active ADCs

5.8.2 Optimized test pulse and ADC delay

Figure 109: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 110: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – input + backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.9 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

Floating copper foil glued directly on passivation on top of the ASIC (see figure 149). Preamp GND bonded only from backside (default pads).

5.9.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 111: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only backside. Parameter=no. of active ADCs

5.9.2 Optimized test pulse and ADC delay

Figure 112: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 113: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; Preamp GND configuration – only backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.10 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; floating copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

Floating copper foil glued directly on passivation on top of the ASIC (see figure 149). All inputs was bonded to ground (except test channels -1 and 128) Preamp GND bonded only from backside (default pads).

5.10.1 Default ASIC configuration

Figure 114: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside. Parameter=no. of active ADCs

Figure 115: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside. Parameter=no. of active ADCs

5.10.2 Optimized test pulse and ADC delay

Figure 116: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 117: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.11 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; floating small horizontal copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

Floating small horizontal copper foil glued directly on passivation on top of the ASIC (see figure 151).

All inputs was bonded to ground (except test channels -1 and 128) Preamp GND bonded only from backside (default pads).

5.11.1 Default ASIC configuration

Figure 118: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating small horizontal copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside. Parameter=no. of active ADCs

Figure 119: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating small horizontal copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside. Parameter=no. of active ADCs

5.11.2 Optimized test pulse and ADC delay

Figure 120: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating small horizontal copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 121: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating small horizontal copper foil on ASIC; All inputs grounded; Preamp GND configuration – only backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs
5.12 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; floating small horizontal copper foil on ASIC; Preamp GND configuration – only backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized – 1 k Ω resistor between VDDA and Ibuf pad.

Floating small horizontal copper foil glued directly on passivation on top of the ASIC (see figure 151).

Preamp GND bonded only from backside (default pads).

5.12.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 122: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating small horizontal copper foil on ASIC; Preamp GND configuration – only backside. Parameter=no. of active ADCs

Figure 123: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating small horizontal copper foil on ASIC; Preamp GND configuration – only backside. Parameter=no. of active ADCs

5.12.2 Optimized test pulse and ADC delay

ASIC configuration: JC configuration (tables 1 & 2) + test pulse and ADC delay optimizations (table 3).

Figure 124: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating small horizontal copper foil on ASIC; Preamp GND configuration – only backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 125: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized; floating small horizontal copper foil on ASIC; Preamp GND configuration – only backside. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

5.13 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; Results comparison

Figure 126: B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Optimized test pulse and ADC delay.

Figure 127: B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Optimized test pulse and ADC delay.

6 Board 1 with ASIC 5

6.1 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB. Ibuf current maximized.

6.1.1 Default ASIC configuration

ASIC configuration: JC configuration (tables 1 & 2).

Figure 128: B1A5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Parameter=no. of active ADCs

Figure 129: B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Parameter=no. of active ADCs

6.1.2 Optimized test pulse and ADC delay

ASIC configuration: JC configuration (tables 1 & 2) + test pulse and ADC delay optimizations (table 3).

Figure 130: B1A5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

Figure 131: B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. Optimized test pulse and ADC delay. Parameter=no. of active ADCs

6.1.3 ASIC response for EMI source

ASIC configuration: default (chip after reset), EMI source 152 over the ASIC.

Figure 132: B1A5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude 100mV. Parameter=frequency of EMI source

Figure 133: B1A5, channel -1 (second measurement), cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude 100mV. Parameter=frequency of EMI source

Figure 134: B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude 100mV. Parameter=frequency of EMI source

Figure 135: B1A5, channel 128 (second measurement), cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude 100mV. Parameter=frequency of EMI source

Figure 136: B1A5, channel -1 (inverted polarity of EMI source), cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude 100mV. Parameter=frequency of EMI source

Figure 137: B1A5, channel 128 (inverted polarity of EMI source), cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude 100mV. Parameter=frequency of EMI source

Figure 138: B1A5, channel 128 (inverted phase (180 deg.) of EMI source), cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude 100mV. Parameter=frequency of EMI source

Figure 139: B1A5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source (47 Ω serial resistance added) 6cm over ASIC, amplitude 3V. Parameter=frequency of EMI source

Figure 140: B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source (47 Ω serial resistance added) 6cm over ASIC, amplitude 3V. Parameter=frequency of EMI source

6.2 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; Preamp GND configuration – input + backside

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized.

Preamp GND bonded from both sides - input pads + backside (default) pads.

6.2.1 ASIC response for EMI source

ASIC configuration: default (chip after reset), EMI source 152 over the ASIC.

Figure 141: B1A5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source (47 Ω serial resistance added) 6cm over ASIC, amplitude 3V. Preamp GND configuration – input + backside. Parameter=frequency of EMI source

Figure 142: B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source (47 Ω serial resistance added) 6cm over ASIC, amplitude 3V. Preamp GND configuration – input + backside. Parameter=frequency of EMI source

6.3 Cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized; Preamp GND configuration – only input

Cap-PCB assembled, bonded to SALT input pads 0 and 127, two 12 pF capacitors assembled to the cap-PCB.

Ibuf current maximized.

Preamp GND bonded only using input pads.

6.3.1 ASIC response for EMI source

ASIC configuration: default (chip after reset), EMI source 152 over the ASIC.

Figure 143: B1A5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source (47 Ω serial resistance added) 6cm over ASIC, amplitude 3V. Preamp GND configuration – only input. Parameter=frequency of EMI source

Figure 144: B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current maximized. EMI source (47 Ω serial resistance added) 6cm over ASIC, amplitude 3V. Preamp GND configuration – only input. Parameter=frequency of EMI source

7 ASICs history

- B0A0 (Board 0, ASIC 0)
 - ASIC fully functional without cap-PCB;
 - Shortcut between inputs 0 and 128 found with cap-PCB; ESD issue wrongly suspected – short on cap-PCB found later;
 - A real ESD issue on input pads created on probe station shortcut between middle input pads (around channel 70.) created; probe station was not ESDsafe;
 - ASIC removed.
- B1A1 (Board 1, ASIC 1)
 - ASIC fully functional without and with cap-PCB; full set of measurements done;
 - Input GND bonds added, ASIC still fully functional;
 - ASIC damaged during handling or reconnecting to test setup (boards 0 and 1 exchanging) no I2C response, the same digital current consumption with or without clock; analogue part still working correctly. No broken bonds found, main CLK SLVS receiver probably damaged on ASIC;
 - ASIC removed.
- B0A2 (Board 0, ASIC 2)
 - Shortcut between inputs 0 and 128 found with cap-PCB; ASIC fully functional after input bonds removing;
 - Short on cap-PCB found and removed;
 - Channel 128 damaged after re-bonding inputs to modified cap-PCB; channel -1 operating correctly;
 - Backside ADC power supply scheme changed 2.2 Ω resistor added in series;
 - Backside ADC power supply scheme changed -1μ H inductor added in series;
 - Floating copper foil glued directly on passivation on top of the ASIC (see figure 149);
- B1A3 (Board 1, ASIC 3)
 - ASIC damaged after assembly; 800 mA of analogue current consumption measured (instead of around 200 mA); 0.55 Ω measured between VDDA and GND; bonding issues (see section 8.1) could be a possible reason;
 - Digital part functional I2C communication working, digital current consumption depends on main CLK as expected;

- Around 150 mV at shaper outputs measured analogue part not working correctly;
- No damaged, shorted or misplaced bonds found; analogue current consumption dropped to zero after all analogue power supply bonds removed no short on PCB board, huge current consumption caused only by ASIC
- ASIC removed.
- B1A4 (Board 1, ASIC 4)
 - ASIC fully functional without cap-PCB; ASIC corner damaged (see fig. 145);
 - Cap-PCB assembled and bonded, ASIC fully functional. Some slightly damaged bondpads found – see section 8.1;
 - Analogue current consumption typical, huge current consumption on digital power supply
 - ASIC removed.
- B1A5 (Board 1, ASIC 5)
 - Cap-PCB with 12 pF assembled and bonded, ASIC fully functional.

8 Various issues

Figure 145: Damaged corner of ASIC 4

8.1 Bonding issue at AGH-UST

Bonding issue found during ASIC 4 assembly – some of the bonds are partially damaged and bondpads are deeply scratched.

Probably to much pressure used during bonding caused the bondpad surface to bend. The edge of the deflection cuts out the tail of the bonding wire, allowing the bonding needle foot to touch and scratch the bondpad surface (usually the foot should be pressed against the wire and should not touch the bondpad directly). A very deep scratch was found on one pad at ASIC 4 (see figure 148). The scratch reaches beneath the bondpad into the structures (so called padring) located underneath. In this particular case padring seems to be untouched, however damaging it will most probably cause the shortcut between power supply and ground, which may explain the issue with ASIC 3.

For the next bonding, a modified parameters with less pressure and increased bonding time should be used.

Figure 146: ASIC 4 – Good and damaged bonds and pads

Figure 147: ASIC 4 – Damaged bonds and pads

Figure 148: ASIC 4 – Very deep scratch reaching beneath the pad

8.2 Copper foil on ASIC B0A2 and 1 μ H inductor assembly

Floating copper foil glued directly on passivation on top of the ASIC. 1 μ H inductor assembled in series between onboard decoupling power supply capacitors and VDDADC + VREFD bonds.

Figure 149: Copper foil on ASIC B0A2 and 1 $\mu\mathrm{H}$ inductor assembly

8.3 Copper foil on ASIC B1A4

Floating copper foil glued directly on passivation on top of the ASIC.

Figure 150: Copper foil on ASIC B1A4

Figure 151: Small horizontal copper foil on ASIC B1A4 $\,$

8.4 EMI source over ASIC B0A2

Figure 152: EMI source over ASIC B0A2 $\,$

List of Figures

1	Input capacitance assembly	9
2	B0A0, channel -1, before bonding. Parameter=no. of active ADCs	10
3	B0A0, channel -1, cap-PCB bonded, 12 pF capacitors assembled. Param-	
	eter=no. of active ADCs	11
4	B0A0, channel 128, cap-PCB bonded, 12 pF capacitors assembled, no	
	data for oscillations. Parameter=no. of active ADCs	12
5	B0A0, channel -1, cap-PCB bonded, capacitors removed. Parameter=no.	
	of active ADCs	13
6	B0A0, channel 128, cap-PCB bonded, capacitors removed. Parameter=no.	
	of active ADCs	13
7	B0A0, channel -1, cap-PCB bonded, 12 pF capacitors re-assembled. Pa-	
	rameter=no. of active ADCs	14
8	B0A0, channel 128, cap-PCB bonded, 12 pF capacitors re-assembled. Pa-	
	rameter=no. of active ADCs	14
9	B0A0, channel -1, cap-PCB bonded, 12 pF capacitors re-assembled, krum_cfg=	='h00
	Parameter=no. of active ADCs	15
10	B0A0, channel -1, input bonds completely removed. Parameter=no. of	
	active ADCs	16
11	B0A0, channel 128, input bonds completely removed. Parameter=no. of	
	active ADCs	16
12	B1A1, channel -1, before bonding. Parameter=no. of active ADCs	17
13	B1A1, channel 128, before bonding. Parameter=no. of active ADCs	17
14	B1A1, channel -1, dummy bond. Parameter=no. of active ADCs	18
15	B1A1, channel 128, dummy bond. Parameter=no. of active ADCs	18
16	B1A1, channel -1, Empty cap-PCB bonded. Parameter=no. of active	
	ADCs	19
17	B1A1, channel 128, Empty cap-PCB bonded. Parameter=no. of active	
	ADCs	20
18	B1A1, channel -1, Empty cap-PCB bonded. Optimized test pulse and	
	ADC delay. Parameter=no. of active ADCs	20
19	B1A1, channel 128, Empty cap-PCB bonded. Optimized test pulse and	
	ADC delay. Parameter=no. of active ADCs	21
20	B1A1, channel -1, cap-PCB bonded, 2.2 pF capacitors assembled. Pa-	
	rameter=no. of active ADCs	22
21	B1A1, channel 128, cap-PCB bonded, 2.2 pF capacitors assembled. Pa-	
	rameter=no. of active ADCs	23
22	B1A1, channel -1, cap-PCB bonded, 2.2 pF capacitors assembled. Opti-	
	mized test pulse and ADC delay. Parameter=no. of active ADCs	23
23	B1A1, channel 128, cap-PCB bonded, 2.2 pF capacitors assembled. Op-	
	timized test pulse and ADC delay. Parameter=no. of active ADCs	24
24	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors assembled. Param-	
	eter=no. of active ADCs	25

25	B1A1, channel 128, cap-PCB bonded, 12 pF capacitors assembled. Pa-	
20	rameter=no. of active ADCs	26
26	BIA1, channel -1, cap-PCB bonded, 12 pF capacitors assembled. Opti- mized test pulse and ADC delay. Parameter=no. of active ADCs	26
27	B1A1, channel 128, cap-PCB bonded, 12 pF capacitors assembled. Opti-	
	mized test pulse and ADC delay. Parameter=no. of active ADCs	27
28	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors	
	assembled. Parameter=no. of active ADCs	28
29	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors	
	assembled. Optimized test pulse and ADC delay. Parameter=no. of	
	active ADCs	29
30	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors	
	assembled: Ibuf current maximized. Parameter=no. of active ADCs	30
31	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 620 k Ω resistors	
-	assembled: Ibuf current maximized. Optimized test pulse and ADC delay.	
	Parameter=no. of active ADCs	31
32	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors	-
-	assembled: Ibuf current maximized. Parameter=no. of active ADCs	32
33	B1A1, channel 128, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors	
	assembled: Ibuf current maximized. Parameter=no. of active ADCs	32
34	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors	
	assembled: Ibuf current maximized. Optimized test pulse and ADC delay.	
	Parameter=no. of active ADCs	33
35	B1A1, channel 128, cap-PCB bonded, 12 pF capacitors $+$ 820 k Ω resistors	
	assembled; Ibuf current maximized. Optimized test pulse and ADC delay.	
	Parameter=no. of active ADCs	33
36	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors	
	assembled; Ibuf current maximized; Preamp GND configuration – input	
	+ backside. Parameter=no. of active ADCs	34
37	B1A1, channel 128, cap-PCB bonded, 12 pF capacitors $+$ 820 k Ω resistors	
	assembled; Ibuf current maximized; Preamp GND configuration – input	
	+ backside. Parameter=no. of active ADCs	35
38	B1A1, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors	
	assembled; Ibuf current maximized; Preamp GND configuration – input	
	+ backside. Optimized test pulse and ADC delay. Parameter=no. of	
	active ADCs	36
39	B1A1, channel 128, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistors	
	assembled; Ibuf current maximized; Preamp GND configuration – input	
	+ backside. Optimized test pulse and ADC delay. Parameter=no. of	
	active ADCs	36
40	B1A1, DLL & PLL stability monitoring (one night); HLP active; only	
	one PLL monitor red	37
41	B1A1, DLL & PLL stability monitoring (a weekend); HLP active	38
42	B1A1, DLL & PLL stability monitoring (four days); HLP inactive	39

43	B1A1, DLL & PLL stability monitoring (two days); HLP active, DLL CP $$	
	current lowered to 'h4	40
44	B0A2, channel -1, input bond removed from channel -1. Parameter=no.	
	of active ADCs	41
45	B0A2, channel -1, input bond removed from channel -1. Optimized test	
	pulse and ADC delay. Parameter=no. of active ADCs	42
46	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized. Parameter=no. of active ADCs	43
47	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized. Optimized test pulse and ADC delay. Parameter=no. of active	
	ADCs	44
48	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor	
	assembled; Ibuf current maximized. Parameter=no. of active ADCs	45
49	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor	
	assembled; Ibuf current maximized. Optimized test pulse and ADC delay.	
	Parameter=no. of active ADCs	46
50	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor	
	assembled; Ibuf current maximized; ADC power supply with 2.2 Ω series	
	resistor. Parameter=no. of active ADCs	47
51	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor	
	assembled; Ibuf current maximized; ADC power supply with 2.2 Ω series	
	resistor. Optimized test pulse and ADC delay. Parameter=no. of active	
	ADCs	48
52	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor	
	assembled; Ibuf current maximized; ADC power supply with 1 μ H series	
	inductor. Parameter=no. of active ADCs	49
53	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors + 820 k Ω resistor	
	assembled; Ibuf current maximized; ADC power supply with 1 μ H series	
	inductor. Optimized test pulse and ADC delay. Parameter=no. of active	
	ADCs	50
54	B0A2, channel -1, cap-PCB bonded, no capacitors assembled; Ibuf current	
	maximized; ADC power supply with 1 μ H series inductor. Parameter=no.	~ .
~~	of active ADCs	51
55	B0A2, channel -1, cap-PCB bonded, no capacitors assembled; Ibuf current	
	maximized; ADC power supply with 1 μ H series inductor. Optimized test	•
-	pulse and ADC delay. Parameter=no. of active ADCs	52
56	B0A2, channel -1, cap-PCB bonded, no capacitors assembled; Ibuf current	
	maximized; ADC power supply with 1 μ H series inductor; floating copper	-
~ -	foil on ASIC. Parameter=no. of active ADCs	53
57	BUA2, channel -1, cap-PCB bonded, no capacitors assembled; Ibuf current	
	maximized; ADC power supply with 1 μ H series inductor; floating copper	
	toil on ASIC. Optimized test pulse and ADC delay. Parameter=no. of	. .
	active ADCs	54

58	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf current maximized: ADC power supply with 1 μ H series inductor: floating	
	copper foil on ASIC. Parameter=no. of active ADCs	55
59	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled: Ibuf	
00	current maximized: ADC power supply with 1 μ H series inductor: floating	
	copper foil on ASIC Optimized test pulse and ADC delay. Parameter=no	
	of active ADCs	56
60	B0A2 channel -1 can-PCB bonded 12 pF capacitors assembled: Ibuf	00
00	current maximized: ADC power supply with 1 <i>µ</i> H series inductor: floating	
	connect maximized, ADC power supply with 1 μ T series inductor, noating	
	Parameter=no, of active ADC_{2}	57
61	R0A2 shapped 1 cap PCB bonded 12 pF capacitors assembled: Ibuf	51
01	boAz, channel -1, cap-FCB bolided, 12 pF capacitors assembled, fbut	
	current maximized; ADC power supply with 1 μ H series inductor; noating	
	copper foil on ASIC; Preamp GND configuration – input + backside.	F 0
<u> </u>	Optimized test pulse and ADC delay. Parameter=no. of active ADCs	58
62	BUA2, channel-1, cap-PCB bonded, 12 pF capacitors assembled; Ibut cur-	
	rent maximized; ADC power supply with 1 μ H series inductor; grounded	
	copper foil on ASIC; Preamp GND configuration – input + backside.	50
0.0	Parameter=no. of active ADCs	59
63	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibut cur-	
	rent maximized; ADC power supply with 1 μ H series inductor; grounded	
	copper foil on ASIC; Preamp GND configuration – input + backside.	
~ (Optimized test pulse and ADC delay. Parameter=no. of active ADCs	60
64	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf cur-	
	rent maximized; ALL power supply with 1 μ H series inductor; grounded	
	copper foil on ASIC; Preamp GND configuration – input + backside.	
	Parameter=no. of active ADCs	61
65	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf cur-	
	rent maximized; ALL power supply with 1 μ H series inductor; grounded	
	copper foil on ASIC; Preamp GND configuration – input + backside.	
	Optimized test pulse and ADC delay. Parameter=no. of active ADCs	62
66	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf cur-	
	rent maximized; ALL power supply with 1 μ H series inductor; grounded	
	copper foil on ASIC; Preamp GND configuration - input + backside. EMI	
	source amplitude 100mV. Parameter=frequency of EMI source	63
67	B0A2, channel -1, cap-PCB bonded, 12 pF capacitors assembled; Ibuf cur-	
	rent maximized; ALL power supply with 1 μ H series inductor; grounded	
	copper foil on ASIC; Preamp GND configuration – only backside. EMI	
	source amplitude 100mV. Parameter=frequency of EMI source	64
68	B0A2, S2D response at 1 MHz of main clock. Rising edge corresponds to	
	the ADC conversion. 12 pF + 820 k Ω at input	65
69	B0A2, Amplitude of S2D response at 1 MHz. 12 pF + 820 k Ω at input	66
70	B0A2, Time structure of S2D response at 1 MHz. 12 pF + 820 k Ω at input.	67

71	B0A2, S2D response at 1 MHz of main clock. Rising edge corresponds to	69
79	POA2 Amplitude of S2D response at 1 MHz 0 pE, floating plane on	00
12	passivation	60
73	B0A2 Time structure of S2D response at 1 MHz 0 pF: floating plane on	09
10	passivation	70
74	B0A2 S2D response at 1 MHz of main clock. Bising edge corresponde	10
14	to the ADC conversion 12 pF: grounded plane on passivation: Preamp	
	CND configuration input + backside	71
75	B0A2 Amplitude of S2D response at 1 MHz 12 pF, grounded plane on	11
15	passivation: Proamp CND configuration input + backside	79
76	B1A4 S2D response at 1 MHz of main clock Bising adge corresponds to	12
10	the ADC conversion. Input node not bonded	72
77	B1A4 Amplitude of S2D response at 1 MHz. Input pads not bonded	73 74
11 79	P1A4. Time structure of S2D response at 1 MHz. Input pads not bonded.	74
10 70	B1A4, Time structure of S2D response at 1 MHz. Input pads not bolided. B1A4, S2D response at 1 MHz of main clock. Dising odge corresponde to	75
19	the ADC conversion 12 pE at inputs	76
80	B1A4 Amplitude of S2D response at 1 MHz 12 pF at inputs	70
80 81	B1A4. Time structure of S2D response at 1 MHz, 12 pF at inputs.	79
80	B1A4, S2D response at 1 MHz of main clock. Bising odge corresponds to	10
62	the ADC conversion 12 pE at inputs Proamp CND input + backside	70
83	B1A4 Amplitude of S2D response at 1 MHz 12 pF at inputs. Preamp	19
00	CND input + backside	80
8/	B1A4 Time structure of S2D response at 1 MHz 12 pF at inputs	80
04	Proamp CND input + backside	Q 1
85	B1A4 channel 1 Before input pade bonded Parameter-no. of active	01
89	ΔDC_2	82
86	B1A4 channel 128 Before input pade handed Parameter—no of active	02
00	ADCs	82
87	B1A4 channel -1 Before input pade honded Optimized test pulse and	02
01	ADC delay Parameter—no, of active ADCs	83
88	B1A4 channel 128 Before input pads bonded. Optimized test pulse and	00
00	ADC delay Parameter=no of active ADCs	83
89	B1A4 channel -1 cap-PCB bonded 12 pF capacitors: Ibuf current max-	00
00	imized Parameter=no of active ADCs	84
90	B1A4 channel 128 cap-PCB bonded 12 pF capacitors. Ibuf current max-	01
00	imized Parameter=no of active ADCs	85
91	B1A4 channel -1 cap-PCB bonded 12 pF capacitors: Ibuf current max-	00
01	imized Optimized test pulse and ADC delay Parameter=no of active	
	ADCs	85
92	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors: Ibuf current max-	00
	imized. Optimized test pulse and ADC delay. Parameter=no. of active	
	ADCs	86

93	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max- imized: Fsmp=33 MHz_Parameter=no_of active ADCs	87
94	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max- imized; Fsmp=33 MHz. Optimized test pulse and ADC delay. Parame- tar-pa of active ADCa	00
95	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max- imized; Preamp GND configuration – input + backside. Parameter=no.	00
96	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max- imized; Preamp GND configuration – input + backside. Parameter=no.	89
97	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max- imized; Preamp GND configuration – input + backside. Optimized test	90
98	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max- imized; Preamp GND configuration – input + backside. Optimized test	91
99	pulse and ADC delay. Parameter=no. of active ADCs	91
100	ADCs	92
101	tive ADCs	93
102	and ADC delay. Parameter=no. of active ADCs	94
103	and ADC delay. Parameter=no. of active ADCs	94
104	input. Parameter=no. of active ADCs	95
105	input. Parameter=no. of active ADCs	96
106	ADCs	97
	ADCs	97

107	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; Preamp GND configuration – input	
	+ backside. Parameter=no. of active ADCs	98
108	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; Preamp GND configuration – input	
	+ backside. Parameter=no. of active ADCs	99
109	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; Preamp GND configuration – input	
	+ backside. Optimized test pulse and ADC delay. Parameter=no. of	
	active ADCs	100
110	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; Preamp GND configuration – input	
	+ backside. Optimized test pulse and ADC delay. Parameter=no. of	
	active ADCs	100
111	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized: floating copper foil on ASIC: Preamp GND configuration – only	
	backside. Parameter=no. of active ADCs	101
112	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; Preamp GND configuration – only	
	backside. Optimized test pulse and ADC delay. Parameter=no. of active	
	ADCs	102
113	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; Preamp GND configuration – only	
	backside. Optimized test pulse and ADC delay. Parameter=no. of active	
	ADCs	102
114	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; All inputs grounded; Preamp GND	
	configuration – only backside. Parameter=no. of active ADCs	103
115	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; All inputs grounded; Preamp GND	
	configuration – only backside. Parameter=no. of active ADCs	104
116	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; All inputs grounded; Preamp GND	
	configuration – only backside. Optimized test pulse and ADC delay. Pa-	
	rameter=no. of active ADCs	105
117	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating copper foil on ASIC; All inputs grounded; Preamp GND	
	configuration – only backside. Optimized test pulse and ADC delay. Pa-	
	rameter=no. of active ADCs	105
118	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maxi-	
	mized; floating small horizontal copper foil on ASIC; All inputs grounded;	
	Preamp GND configuration – only backside. Parameter=no. of active ADC	s106

119	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating small horizontal copper foil on ASIC; All inputs grounded;	
	Preamp GND configuration – only backside. Parameter=no. of active ADCs10)7
120	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maxi-	
	mized; floating small horizontal copper foil on ASIC; All inputs grounded;	
	Preamp GND configuration – only backside. Optimized test pulse and	
	ADC delay. Parameter=no. of active ADCs)8
121	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating small horizontal copper foil on ASIC; All inputs grounded;	
	Preamp GND configuration – only backside. Optimized test pulse and	
	ADC delay. Parameter=no. of active ADCs)8
122	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating small horizontal copper foil on ASIC; Preamp GND con-	
	figuration – only backside. Parameter=no. of active ADCs 10)9
123	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating small horizontal copper foil on ASIC; Preamp GND con-	
	figuration – only backside. Parameter=no. of active ADCs	10
124	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating small horizontal copper foil on ASIC; Preamp GND con-	
	figuration – only backside. Optimized test pulse and ADC delay. Param-	
	eter=no. of active ADCs	11
125	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized; floating small horizontal copper foil on ASIC; Preamp GND con-	
	figuration – only backside. Optimized test pulse and ADC delay. Param-	
	eter=no. of active ADCs	1
126	B1A4, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized. Optimized test pulse and ADC delay	12
127	B1A4, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized. Optimized test pulse and ADC delay	13
128	B1A5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized. Parameter=no. of active ADCs	4
129	B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized. Parameter=no. of active ADCs	15
130	B1A5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized. Optimized test pulse and ADC delay. Parameter=no. of active	
	ADCs	15
131	B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current max-	
	imized. Optimized test pulse and ADC delay. Parameter=no. of active	
100	ADCs	16
132	BIA5, channel -1, cap-PCB bonded, 12 pF capacitors; Ibuf current maxi-	
	mized. EMI source 1cm over ASIC, amplitude 100mV. Parameter=frequency	. –
	of EMI source	17

133	B1A5, channel -1 (second measurement), cap-PCB bonded, 12 pF capac-	
	itors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude	
	100mV. Parameter=frequency of EMI source	117
134	B1A5, channel 128, cap-PCB bonded, 12 pF capacitors; Ibuf current	
	maximized. EMI source 1cm over ASIC, amplitude 100mV. Parame-	
	ter=frequency of EMI source	118
135	B1A5, channel 128 (second measurement), cap-PCB bonded, 12 pF ca-	
	pacitors; Ibuf current maximized. EMI source 1cm over ASIC, amplitude	
	100mV. Parameter=frequency of EMI source	118
136	B1A5, channel -1 (inverted polarity of EMI source), cap-PCB bonded.	
	12 pF capacitors: Ibuf current maximized. EMI source 1cm over ASIC.	
	amplitude 100mV Parameter=frequency of EMI source	119
137	B1A5 channel 128 (inverted polarity of EMI source) can-PCB bonded	110
101	12 pF capacitors: Ibuf current maximized EMI source 1cm over ASIC	
	amplitude 100mV Parameter=frequency of EMI source	119
138	B1A5 channel 128 (inverted phase (180 deg) of EMI source) cap-PCB	110
100	bonded 12 pF capacitors: Ibuf current maximized EMI source 1cm over	
	ASIC amplitude 100mV Parameter=frequency of EMI source	120
139	B1A5 channel -1 can-PCB bonded 12 pF capacitors: Ibuf current max-	120
100	imized EMI source (47 Ω serial resistance added) 6cm over ASIC am-	
	plitude 3V Parameter—frequency of EMI source	191
140	B1A5 channel 128 cap-PCB bonded 12 pE capacitors: Ibuf current max-	141
140	imized EMI source (47.0 serial resistance added) from over ASIC am-	
	ninzed. Ewi source (47 32 serial resistance added) bein over ASIC, am-	191
141	B1A5_channel_1_can_PCB bonded_12 pF capacitors: Ibuf current max-	121
1.11	imized EMI source (47 O serial resistance added) from over ASIC am-	
	plitude 3V Preamp GND configuration – input + backside Parame-	
	ter-frequency of EMI source	199
142	B1A5 channel 128 can-PCB bonded 12 nF canacitors: Ibuf current max-	122
174	imized EMI source (47.0 serial resistance added) from over ASIC am-	
	plitude 3V Preamp GND configuration – input + backside Parame-	
	ter-frequency of EMI source	123
143	B1A5_channel_1_can_PCB bonded_12 pF capacitors: Ibuf current maxi-	120
1 10	mized EMI source (47.0 serial resistance added) 6cm over ASIC ampli-	
	tude 3V Preamp GND configuration – only input Parameter=frequency	
	of EMI source	124
144	B1A5 channel 128 can-PCB bonded 12 nF canacitors: Ibuf current max-	141
111	imized EMI source (47 O serial resistance added) 6cm over ASIC ampli-	
	tude 3V Preamp GND configuration – only input Parameter—frequency	
	of EMI source	125
145	Damaged corner of ASIC 4	120
146	ASIC 4 – Good and damaged bonds and pads	120
140	ASIC 4 – Damaged bonds and pads	130
1/18	ASIC 4 – Very deep scratch reaching beneath the pad	131
140	note i very deep betaten reaching beneath the pad	101
149	Copper foil on ASIC B0A2 and 1 μ H inductor assembly	132
-----	--	-----
150	Copper foil on ASIC B1A4	133
151	Small horizontal copper foil on ASIC B1A4	134
152	EMI source over ASIC B0A2	135