Parametryzacja przetworników analogowocyfrowych

wersja: 05.2015

1. Cel ćwiczenia

Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC-analog-to-digital converter), identyfikacja ewentualnych źródeł błędów przetwarzania, zdefiniowanie i pomiar podstawowych parametrów statycznych i dynamicznych przetworników ADC.

2. System pomiarowy

Rys.1 Podłączenie układu FPGA

Ze względu na optymalizację procedury pomiarowej zaprojektowano dedykowany system pomiarowy zbudowany z wykorzystaniem układu FPGA **Spartan-3 XC3S700AN-FG484** na płytce ewaluacyjnej **Spartan-3AN Starter Kit**.

3. Program ćwiczenia

1. Oprogramowanie pomiarowe

Pomiary wykonywane są w całości przy użyciu programu do akwizycji danych **adc209_daq.py** dostępnego do pobrania ze strony **asic.fis.agh.edu.pl/students/dsp/**, sekcja *"Instrukcja i oprogramowanie do pomiaru przetwornika ADC"* - oprogramowanie w archiwum **tar** lub **zip.** Pobrane archiwum należy rozpakować:

- tar -xf <nazwa_archiwum> dla archiwum **tar**
- unzip <nazwa_archiwum> dla archiwum zip

Należy również skonfigurować środowisko do programowania układu FPGA wydając w konsoli komendę:

source /opt/xilinx/settings64.sh

W celu uruchomienia programu do akwizycji danych należy w konsoli przejść do katalogu do którego zostało pobrane i rozpakowane archiwum (typowo **~/Pobrane/ADC209_DAQ**) a następnie wydać komendę:

./adc209_daq.py

W przypadku wystąpienia błędu rozpoczynającego się komunikatem Traceback (most recent call last):

File "./adc209_daq.py", line 9, in <module>
ser = serial.Serial(port, 115200, timeout=0)

należy otworzyć program do akwizycji danych do edycji, np. komendą

gedit adc209_daq.py

i w linii 8:

port = "/dev/ttyS0"

zmienić numer portu szeregowego z **SO** na jeden z **S1**, **S2**, **S3**, itd. Po każdej zmianie uruchomić skrypt sprawdzając czy błąd został usunięty.

2. Zestawienie stanowiska pomiarowego

Badany przetwornik ADC jest 8-bitowym przetwornikiem kolejnych przybliżeń (SAR) o symbolu ADC0804. Wykorzystując uniwersalną płytkę montażową zbudować układ przetwornika ADC w konfiguracji przedstawionej na rysunku 2.

Do układu należy doprowadzić zegar i sygnał próbkujący z układu FPGA (wyjście J15, rys. 1). Układ przetwornika ADC należy zasilać napięciem **3.3V** z zasilacza laboratoryjnego lub płytki ewaluacyjnej układu FPGA. Wyjścia danych połączyć z płytką ewaluacyjną. Wejście analogowe przetwornika podłączyć w

zależności od prowadzonego pomiaru:

- dla manualnego pomiaru statycznego z zasilaczem laboratoryjnym,
- dla automatycznego pomiaru statycznego z wyjściem przetwornika DAC układu FPGA (patrz rys. 1)
- dla automatycznego pomaru dynamicznego z wyjściem generatora sinusoidalnego

Rys.2 Podłączenie przetwornika ADC0804

Płytkę ewaluacyjną z układem FPGA, poza połączeniem z przetwornikiem analogowym, należy połączyć z komputerem poprzez porty **UART** (służącym do akwizycji danych) i **USB** (co umożliwia zaprogramowanie układu).

Na wejście zegara **CLK_gen** (J2, rys. 1) należy podać z generatora przebieg prostokątny o następujących parametrach:

1. Dla generatora **Tektronix**:

- amplituda 1.65 Vpp
- offset **0.825 V**
- częstotliwość **524 288 Hz** (2¹⁹)
- 2. Dla generatora Rigol:
 - amplituda 3.3 Vpp
 - offset **1.65 V**
 - częstotliwość **524 288 Hz** (2¹⁹)

Po podłączeniu płytki ewaluacyjnej należy zaprogramować układ FPGA wybierając z menu programu do akwizycji danych **adc209_daq.py** opcję **f**. Poprawne zaprogramowanie układu sygnalizowane jest wyświetleniem na wyświetlaczu LCD napisu:

ADC209 DAQ Idle Częstotliwość próbkowania przetwornika ADC ustala się za pomocą przełączników suwakowych na płytce układu FPGA (rys. 1). Dostępne podzielniki i odpowiadające im częstotliwości próbkowania przedstawia tabela 1. Wybrana częstotliwość próbkowania obrazowana jest na diodach LED znajdujących się ponad przełącznikami suwakowymi. Jeśli w sposób ciągły świeci się tylko jedna z ośmiu diód, wskazuje to na brak sygnału zegarowego na wejściu **CLK_gen** (J2, rys. 1).

Dla pomiarów statycznych (punkty 4 i 5) częstotliwość próbkowania powinna zostać ustawiona na **1024 Hz**.

Ustawienie przełącznika (bity 2-0)	Podzielnik	Częstotliwość próbkowania (dla zegara wejściowego 524 288 Hz)
000	512 (2 ⁹)	1024 Hz
001	1024 (2 ¹⁰)	512 Hz
010	2048 (211)	256 Hz
011	4096 (2 ¹²)	128 Hz
100	8192 (2 ¹³)	64 Hz
101	16384 (2 ¹⁴)	32 Hz
110	32768 (2 ¹⁵)	16 Hz
111	65536 (2 ¹⁶)	8 Hz

Tabela 1. Konfiguracja częstotliwości próbkowania przetwornika ADC

3. Sprawdzenie stanowiska pomiarowego

W celu sprawdzenia stanowiska pomiarowego na wejście przetwornika ADC należy podać dowolne stałe napięcie z zakresu **0-3.3 V** z zasilacza laboratoryjnego. Z menu w programie do akwizycji danych **adc209_daq.py** należy wybrać opcję **r** co pozwala na bezpośrednią, ciągłą obserwację kodu wyjściowego przetwornika ADC. Zmieniając napięcie wejściowe (nie przekraczając zakresu **0-3.3 V**) zaobserwować zmiany kodu na wyjściu ADC.

Jeżeli program do akwizycji danych nie wyświetla kodu wyjściowego ADC (brak liczby dziesiętnej w linii "**ADC output =**") należy ponownie zmienić numer portu szeregowego w programie (patrz podpunkt pierwszy "**Oprogramowanie pomiarowe**").

4. Pomiar statyczny manualny parametrów przetwornika ADC0804

Pomiar statyczny manualny polega na ręcznym podawaniu napięcia na wejście przetwornika analogowo-cyfrowego za pomocą zasilacza laboratoryjnego w maksymalnym zakresie **0-3.3V**. Zakres i krok pomiaru zostaną podane przez prowadzącego ćwiczenie.

Krok pomiaru należy ustawić w programie do akwizycji danych wykorzystując opcję I. Po ustawieniu uruchamiamy tryb pomiaru (opcja **p**).

Po liście punktów poruszać się można za pomocą klawiszy < i > zaś użycie klawisza **Enter** na danym punkcie listy powoduje odczyt kodu wyjściowego przetwornika dla tej wartości napięcia. Na zasilaczu powinno być uprzednio ustawione napięcie odpowiadające danemu punktowi z listy.

Przed rozpoczęciem pomiaru wygodnie jest ustawić plik roboczy, do którego będą zapisywane dane (opcja **s** w trybie pomiarów ręcznych).

5. Pomiar statyczny automatyczny parametrów przetwornika ADC0804

Pomiar statyczny automatyczny ma za zadanie zobrazować działanie podstawowego systemu pomiarowego i dostarczyć pełnego zestawu danych do analiz statycznych. Na wejście przetwornika ADC0804 podawane jest napięcie generowane automatycznie za pomocą przetwornika cyfrowo-analogowego DAC o znacznie lepszej rozdzielczości bitowej (12-bitów).

Uruchomienie pomiarów następuje poprzez wybranie opcji **s** w menu głównym. Zostanie zebrany cały zestaw danych statycznych (4096 punktów). Wyniki zostaną zapisane w pliku tekstowym, którego nazwę należy podać po skończeniu pomiaru.

6. Pomiar dynamiczny automatyczny parametrów przetwornika ADC0804

Pomiary dynamiczne stanowią główny element analizy parametrów przetworników analogowo-cyfrowych. Opierają się na analizie częstotliwościowej próbek sygnału sinusoidalnego o znanych parametrach.

Na wejście przetwornika należy podać przebieg sinusoidalny o następujących parametrach:

1. Dla generatora **Tektronix**:

- amplituda 1.65 Vpp
- offset **0.825 V**
- 2. Dla generatora Rigol:
 - amplituda **3.3 Vpp**
 - offset **1.65 V**

Czestotliwość przebiegu sinusoidalnego musi być nieparzysta wielokrotnościa (harmoniczna) częstotliwości bazowej 1024-punktowej Fouriera dyskretnej transformaty (DFT) dla zadanej częstotliwości próbkowania. Zestawienie odpowiednich częstotliwości sygnału wejściowego zawarte jest w tabeli 2.

Pomiary należy wykonać dla następujących częstotliwości próbkowania i sygnału sinusoidalnego:

- 1. Częstotliwośc próbkowania 1024 Hz,
 - 1. Częstotliwość przebiegu wejściowego 409 Hz
 - 2. Częstotliwość przebiegu wejściowego 241 Hz
 - **3.** Częstotliwość przebiegu wejściowego **13 Hz**
- 2. Częstotliwośc próbkowania 128 Hz,
 - 1. Częstotliwość przebiegu wejściowego 51.125 Hz
 - 2. Częstotliwość przebiegu wejściowego 30.125 Hz
 - 3. Częstotliwość przebiegu wejściowego 30.12 Hz
 - 4. Częstotliwość przebiegu wejściowego 3.875 Hz

Pomiary uruchamiamy za pomocą opcji **d**. Dane zostaną zapisane w pliku, którego nazwę należy podać po zakończeniu pomiaru.

Częstotliwość	Częstotliwość przebiegu wejściowego [Hz] dla n-tej harmonicznej częstotliwości podstawowej gdzie n=									
próbkowania [Hz]	409	241	127	61	31	13	5	3	1	
1024	409	241	127	61	31	13	5	3	1	
512	204,5	120,5	63,5	30,5	15,5	6,5	2,5	1,5	0,5	
256	102,25	60,25	31,75	15,25	7,75	3,25	1,25	0,75	0,25	
128	51,125	30,125	15,875	7,625	3,875	1,625	0,625	0,375	0,125	
64	25,5625	15,0625	7,9375	3,8125	1,9375	0,8125	0,3125	0,1875	0,0625	
32	12,78125	7,53125	3,96875	1,90625	0,96875	0,40625	0,15625	0,09375	0,03125	
16	6,390625	3,765625	1,984375	0,953125	0,484375	0,203125	0,078125	0,046875	0,015625	
8	3,1953125	1,8828125	0,9921875	0,4765625	0,2421875	0,1015625	0,0390625	0,0234375	0,0078125	

Tabela 2. Częstotliwości sygnału wejściowego w funkcji częstotliwości próbkowania