This is an old revision of the document!
Dyskretna transformata Fouriera (ang. Discrete Fourier Transform – DFT) jest procedurą numeryczną pozwalającą analizować, badać oraz syntetyzować sygnały w sposób dużo bardziej efektywny niż badając sygnały w postaci ciągłej [Ric03]. Dzięki DFT możliwe jest wyznaczenie zawartości częstotliwościowej dowolnego sy- gnału dyskretnego (w dziedzinie czasu). DFT wywodzi się bezpośrednio z przekształ- cenia Fouriera, danego dla sygnałów ciągłych [Ric03, Dag01, Zie02], jako dyskretny ciąg X(m) w dziedzinie częstotliwości: <laetx> X(m)=\sum{x(n)e^{-j2\pinm/M}} </latex> gdzie x(n) to dyskretny N elementowy ciąg wartości sygnału w dziedzinie czasu. Przyjmując, iż próbki w dziedzinie czasu zbierane są w równoodległych chwilach o długości 1/fs , gdzie fs jest częstotliwością próbkowania, można wprowadzić pojęcie częstotliwości podstawowej jako: