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Sampling Pulses for Optimal Timing
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Abstract—When extracting unknown band-limited pulses from
sampled data, the Nyquist criterion defines the minimum sam-
pling frequency. With well-defined pulse shapes and a stationary
noise environment one can use matched filters to recover time
and amplitude, but this is usually not the case with scintillation
detectors. If the noise is not stationary other methods must be
used. Our study investigates different timing strategies and how
the timing precision depends on ADC resolution and sample rate.
It also compares the timing precision with data obtained from an
analogue setup. Pulses from an LSO crystal with photomultiplier
readout are studied experimentally. Our best method gives in this
case a 10% improvement in timing compared to a matched filter
approach. Some simulation results are also reported.

Index Terms—Analog-digital conversion, digital signal process-
ing, sampling methods, timing.

I. INTRODUCTION

WHEN processing pulses from radiation detectors in phys-
ical or medical applications, time and energy are usually

the only parameters of interest. While older detection systems
used analogue circuitry to process signals before digitization,
state-of-the-art detection systems often rely on early digitiza-
tion, sampling the signals with free running clocks [1]. Digiti-
zation is performed after applying a simple analogue filter, usu-
ally a low pass filter. Subsequent digital processing is then used
to recover time, amplitude and pulse quality information. The
latter reveals if the time and amplitude information are compro-
mised by pile-up.

Signal processing in an analogue timing system can be
implemented in a free running digital system, provided the
sampling rate and sampling precision are sufficiently high. A
combination consisting of a pulse shaper and a constant frac-
tion discriminator (CFD) can be shown to be equivalent to an
analogue anti-aliasing (low-pass) filter followed by a sampling
ADC, a digital filter and a maximum-finder (or zero-crossing).
However, apart from parameters equivalent to those in analogue
systems, a digital system has additional degrees of freedom
with respect to choice of algorithms and filter parameters. More
degrees of freedom must necessarily translate into better op-
timum performance, but whether the improvement is sufficient
to motivate the increased complexity must be verified.

Another advantage of digital processing is better treatment of
pile-up events. The analogue solution is to shorten the pulses,
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which means losing statistical information. This is not necessary
in a digital system since one can treat normal and pile-up pulses
differently, optimizing the approach to match the pulse type.

When extracting unknown band-limited pulses from sampled
data, the Nyquist criterion defines the minimum sample rate
that does not cause aliasing. In the time domain this can rather
loosely be expressed as a minimum of three sample points on the
rising edge of the pulse, since one can show that almost all of
the signal power occurs below half of this sampling frequency.
The rise time corresponds to a frequency limit of (such
pulses have a “knee” at [1] and most of the signal power
is below twice this frequency), which according to Nyquist must
be sampled with a period less than , i.e., more than two
sample points on the rising edge.

With well-defined pulse shapes and a noisy environment one
can use matched (optimum) filters to recover time and ampli-
tude, but the requirement of stationary noise is not always ful-
filled. In that case one has to resort to a more basic statistical
approach.

II. LEAST SQUARE ESTIMATORS

A timing algorithm for the non-stationary case must be
derived from “first principles”, i.e., the maximum likelihood
method or equivalently the least square method, if one can
assume that the noise is normally distributed. Let us make this
assumption here. Let us also assume that the background has
already been removed.

Using matrix formalism one can express the least square sum
as:

(1)

where Y is the sampled data, an ideal pulse starting at t
and V the covariance matrix, which expresses the noise correla-
tion between nearby data points. In the general case F depends
on a set of parameters of which the amplitude (a) is the most
important. Other parameters may affect the pulse shape. Let us
assume that in this case the influence of the other parameters
can be neglected in comparison to a. The task is to estimate t
by minimizing (1) and to do that as efficiently as possible with a
minimal systematic error. For this we need an accurate pulse de-
scription F. As long as V is positive definite (semi-definite can
also work), which is the case if V is a covariance matrix, and
the noise not too large, we can always find an accurate t-value.

is minimized if F is close to Y. Actually it is 0 if they are
identical. Thus if F is a correct model, (1) will lead to a consis-
tent estimator of the parameters. One can also show that if the
noise level is small the estimators are unbiased. However, the
precision and thus the efficiency depend on how well we can
determine V. This means that even if one erroneously assumes
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TABLE I
DIFFERENT TIMING ESTIMATORS

stationary noise the result will still be accurate, but not as pre-
cise as it would be with a correct noise description, provided
noise level is not too large.

There are different possibilities to describe the situation. If
we know that the pulses are of the same size we can use
instead of . If we know that the pulse shape is invariant
but the amplitude varies we can use .

If the noise can be assumed stationary, V is a band matrix with
the same elements across the band. If the noise at the different
sample points is uncorrelated we have a diagonal matrix. Other
possibilities are that the noise amplitude is proportional to the
pulse amplitude, or that the noise is related to a Poisson process.
In these cases the proper covariance matrix would be or

, respectively.
Minimizing the with respect to the amplitude will give us

different amplitude estimators depending on the F and V model
we have used. Inserting these models in (1) and minimizing with
respect to t will give us a timing estimator (see Table I).

If we take the combination we get:

(1')

which gives us the following amplitude estimator:

(2)

Inserting this value in the expression above results in:

(3)

The task is now to find the relative position of Y and P that
minimizes . As a start let us consider Y as fixed moving P
(and V). In the case of stationary noise minimizing expression
(3) is equivalent to matched filter processing, since the first term
does not depend on the pulse position and the denominator in the
second term is constant.

The expression and its time derivatives are non-linear but can
be solved iteratively. An accurate treatment requires a matrix
and a scalar multiplication for each iteration, assuming that pre-
viously compiled sets of and C are stored in memory. How-
ever, with modern Field Programmable Gate Arrays (FPGA) the
metric of real-time computational complexity has changed dras-
tically, making very large real time computational tasks feasible
[2]. Another approach is to combine a simplified approximate
real time calculation with a detailed treatment up- stream.

With one (P, V) combination the formula above (3) can be
used to identify the best positioning (timing) by sliding P rela-
tive to Y in steps of sample periods . The same (P, V) com-
bination can be used after modifying the indices. Sub-sample
timing, however, requires re-sampling along a delayed grid or
sampling the delayed pulse, . For sub- sample
timing there must thus be as many different V’s and C’s as there
are sub samples (n) in the sample interval . A binary search
and a final interpolation can be used for the optimization [2].

Another approach to minimizing (3) is to consider P (and V)
stationary, and move Y to find the minimum. To find the sub-
sample position will then require interpolation. Sinc-interpola-
tion of Y will introduce no errors provided the initial low pass
filter fulfills the Nyquist criteria. A sufficiently precise spline
may also work.

Above we assumed that the covariance matrix was indepen-
dent of the amplitude. However, if the noise is purely Poisson
distributed we can show (see (7) below) that V is linearly de-
pendent on a, i.e., . Thus:

(4)

This time minimizing the -square with respect to the ampli-
tude gives us:

(5)

Inserting this in the expression above results in:

(6)

The task is now to find the relative position of Y and P
that minimizes . Since and move together, i.e.,

is independent of Y is positive
and the square root is monotonous, we realize that mini-
mizing is the same as minimizing . We have
thus six different algorithms that are valid under different
circumstances.

In both cases, accurate information about the pulse shape (P)
and the covariance matrix (V) is needed to obtain good timing
information. Our direct interest in the present investigation was
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Fig. 1. Average pulses from LSO and XP2020 (dashed) and R9779 (continuous) using 10 000 and 1000 pulses, respectively.

to optimize the timing of gamma-ray detection from LSO scin-
tillator crystals read out by a photomultiplier tube (PMT) for
use in a positron camera (PET) application. Therefore, it is for
the LSO-PMT combination that we have attempted to estimate P
and V. We have done this in different ways: directly from exper-
imental data, by convolving data from a picoseconds light pulse
excitation with an exponential or by noise simulations from a
detailed pulse model that has been fitted to experimental data.
The different approaches are evaluated by comparing the effects
on the variance of the gamma coincidence timing of positron
annihilations.

III. EXPERIMENTAL SET-UP

Pulses from an LSO-PMT detector combination have been
studied experimentally with a LeCroy 8300A oscilloscope with
a 3 GHz analogue bandwidth, 20 GS/s sample rate and 8-bit
conversion. A PC, which served as an experiment controller,
was connected to the oscilloscope via Ethernet. The data was
stored on disk for off line analysis using Matlab. The experi-
mental set-up consists of two identical PMTs, each coupled to
one of the opposing 4 4 faces of a 4 4 20 mm LSO crystal.
Two different types of PMTs have been used: Photonis XP2020
and Hamamatsu R9779. It was important for the intended dig-
ital application that the PMT base circuitry used was linear. The
anode signals were fed directly to the oscilloscope. Signals from
the last dynode were used to only select pulses belonging to the
(450–625) keV energy window.

A reference analogue set-up used a preamplifier, CFD and a
TAC (time-to-pulse height-converter). The timing performance
of this was 382 ps for XP2020 and 350 ps for the R9779 tube.
These are plausible results, indicating that the detector set-up is
acceptable.

We have assumed that increasing the sample rate above
20 GS/s and the analogue bandwidth to more than 3 GHz

will not significantly improve the timing performance. This
assumption is supported by the fact that we have seen that
decreasing these values by 50% does not significantly affect
the timing precision. This means that most of the information,
i.e., the upper frequency limit of the signal, is well below
3 GHz. However, at this point we cannot be sure whether the
8-bit ADC resolution is sufficient. By aligning and averaging
digitized pulses we could find an “ideal” pulse shape with better
precision (Fig. 1). The alignment was done in different ways, by
aligning the maxima of the cross correlations with a reasonable
reference pulse shape or by using a Digital version of CFD, i.e.,
DCFD. Even if we iterated the correlation procedure several
times using the aligned averaged as a new reference pulse,
constant fraction gave the best result. The reason was that the
correlation method is more sensitive to coherent noise, which
was present at low level. We also tried Digital Leading Edge
Timing (DLET), which, in our case, proved to be inferior to
CFD due to noise correlation (see below).

Since noise is present in the digitized pulses, it is in principle
possible to reach an arbitrarily high precision by increasing the
number of pulses to average (with no noise present averages of
8-bit data will still yield 8-bit data). However, the limited align-
ment precision will produce a deformed average pulse that can
be described as the convolution of the ideal pulse and the align-
ment error distribution. In presence of coherent noise the latter
distribution is not smooth. This contributes to causing the re-
sulting average pulse shape to be uneven as can be seen for
XP2020 in Fig. 1. We also saw that different PMT/base com-
binations produce different patterns.

Another approach was to expose an XP2020 PMT with a sim-
ilar base to picosecond light pulses from a frequency doubled
780 nm pulsed dye laser to reproduce light with similar prop-
erties as that from LSO in order to investigate the system’s im-
pulse response.
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Fig. 2. The impulse response from LSO and XP2020 at different HV-settings.

Fig. 3. A reference pulse obtained by convolving an LSO and XP2020 im-
pulse response with an exponential representing the light emission from an LSO
crystal.

Fig. 2 shows the impulse response of the combination
XP2020 and LSO. We see that the amplitude is increased and
the delay is decreased with increased High Voltage settings.
The width stays more or less the same. We also see that there is
an oscillatory component. The shape of the impulse response is
a combination of a Gaussian from the PMT and the dampened
oscillatory response from the PMT base circuitry.

Convolving the impulse response with a function describing
the light response from the LSO crystal should give us the pulse
shape of LSO/PMT combinations (Fig. 3).

WhencomparingFigs.1and3weseeasimilarstructurearound
the maximum. The variations along the trailing edge of XP2020,
which are not due to normal noise (they did not disappear with
increased sample size), are not present in Fig. 3 since only 20 ns
of the impulse response was included in the convolution.

IV. NOISE ANALYSIS

Characteristic noise ensembles can be obtained by subtracting
the amplitude fitted reference (average) pulse from sample pulses
(Fig. 4). By construction the ensemble average of the noise is then
zero. Since we have used pulses with approximately constant
amplitude we have used the argument leading to expression (3)
for optimum timing. Thus, we used expression (2) for amplitude

Fig. 4. A “noise” pulse from XP2020.

Fig. 5. Noise variance from LSO and XP2020.

Fig. 6. A noise covariance function for LSO and XP2020, showing the covari-
ance between the pulse amplitude at the time 50 ns and 100 ns and amplitudes
at other times.

estimation. From this noise we can calculate variances and co-
variances (Figs. 5 and 6). These are also subject to the alignment
error mentioned above. This causes the negative correlation in
the early part of Fig. 6 as well as the sharp peak in Fig. 5, since
alignment variations add to variance according to the steepness
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of the pulse. The variations are significant and will not disappear
with improved statistics. The noise variance in Fig. 5 resembles
the pulse shape in Fig. 1, which is due to the Poisson character
of the PMT noise. The sharp peak is caused by misalignment
errors. Some of the variations seen on the trailing edge of the
pulse are due to statistics since here increasing the number of
samples still improves the smoothness.

The peak in the covariance function tells us how long the
influence of a measured value persists. The correlation time,
i.e., the width of a rectangle function with the same maximum
height, is about 5 ns.

If we express the pulse shape as a convolution of the impulse
response of the PMT system, , (Fig. 2) and the Poisson dis-
tributed intensity of the light from the crystal, , we can cal-
culate the covariance and the variance as [3]:

(7)

and

(8)

We see that the noise variance and covariance vary substan-
tially along the pulse. This means that the conditions for using
matched filters efficiently are not fulfilled. If was constant
and h real, would be completely symmetric around

. With an exponential , which is expected from a scintil-
lator pulse, we get a progressively increasing attenuation with
time. This is what we see in Fig. 6. However, the pattern in-
dicates that h is non-zero up to 50 ns from the peak, which is
outside the range shown in Fig. 2. is also responsible for
the variations in Fig. 5 as well as the variations along the rear
slope of the reference pulse (Fig. 1.

V. PULSE SIMULATIONS

A simulation model was developed to motivate assumptions
and to study different features in the data. Here we used the mea-
sured impulse response of the PMT system (see Fig. 2) and an
exponential (with the appropriate time constant for LSO, 40 ns
[4]) light distribution with Poisson noise. To this we added a
small constant white noise, bandwidth limited to 2 GHz. We
chose the noise amplitude in order to match the experimental
variance and covariance. For the XP 2020 the Poisson noise cor-
responded to a total of 1 440 photoelectrons in the pulse. With a
quantum efficiency of 25% this means about 6 000 photons from
the scintillation, a reasonable number considering the crystal di-
mensions used. A 511 keV gamma incident upon a large crystal
produces about 15 000 photons [4]. The quality of the fit was
semi-quantitative. It was made by manually scanning the param-
eter space to keep the computation time at a reasonable level.

The superior timing performance of DCFD compared to
DLET, even with pulses even when they were of equal size,
was verified with simulated data. It was found to be a statis-
tical effect due to the positive correlation between the trigger
and the maximum point (i.e., negative correlation when you

Fig. 7. Noise variance from the simulated data of (LSO-XP2020) with (dashed
line) and without (solid line) alignment.

Fig. 8. A noise covariance function from the simulated data of (LSO-XP2020),
showing the covariance between the pulse amplitude at the time 50 ns and am-
plitudes at other times (— not aligned data, - aligned data).

subtract these values). A statistical deviation that would often
advance the time would also increase the maximum value (both
correlation and rise time are about 5 ns). DCFD would then
compensate by increasing the efficient threshold and delaying
the timing. However, this beneficial effect did not occur if the
correlation time was smaller or the slope longer.

From a large number (16 000) of simulated pulses emitted at
the same time we calculated the noise variance with and without
alignment with the DCFD method (Fig. 7). From this figure we
see the similarity of the variance to the one obtained from the
experimental data (Fig. 5). The negative correlation between
values in the neighborhood of the pulse maximum and values
along the pulse slope is confirmed to be due to the alignment
error (Fig. 8) via an erroneous amplitude estimation. That is to
say, a pulse where noise causes premature timing will also exag-
gerate the peak value and thus the amplitude. This will, in turn,
cause the values along the slope to be smaller than predicted by
the amplitude estimator.
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TABLE II
DIGITAL AND ANALOG TIMING RESOLUTION (FWHM)

The fine structure around the peak in Fig. 8 is different from
Fig. 6 due to fact that the PMT/base combinations were not iden-
tical (different ) and only 20 ns of the impulse response were
used in the simulation.

VI. RESULTS

A. Timing Resolutions

Table II summarizes the timing resolutions at the FWHM (full
width at half maximum) for the digital timing (using method 4
in Table I) when sampling at 2 GHz, and compares these to the
result obtained from the analog setup described above. We see
that the result from the digital M4 method is 31 ps better than the
analog for the XP2020-LSO-LSO combination and 38 ps for the
R9779-LSO-plastic combination. Please note the different de-
tector configurations. FWHM was used in the comparison since
this was how the analog timing was evaluated. When comparing
digital results standard deviation is more convenient.

We calculated the timing of the same set of the data for the
(XP2020-XP2020) combination, using DCFD and using cross
correlation (M1) with a reference pulse. The result of the cross
correlation is in the range of the analog timing while the result
from DCFD is few picoseconds better.

The digital M4 method was also compared to the DCFD
method using simulated data in order to verify the superiority
of the former. The result was a standard deviation of 170 ps and
190 ps, respectively. This is in good agreement with the result
obtained experimentally (about 10% improvement).

B. Sample Rate and ADC Precision

After Fourier transforming the average pulse one can eval-
uate where to apply a frequency limit. The pulse has significant
contributions up to 450 MHz. Due to the smoothing effect of
the averaging one can assume that the true pulse has a some-
what higher frequency limit. Applying a limit slightly above this
point will mostly eliminate noise. By decimating the 20 GHz,
after applying the appropriate anti-aliasing filter, we can simu-
late the effect of lower sample rates. Fig. 9 shows that for both
experimental and simulated data nothing significant is lost by
sampling with 2 GHz and very little by sampling at 1 GHz (cor-
responding to 4 points on the less than 5 ns rising edge in Fig. 1).

The standard deviation has also been evaluated using different
number of ADC bits for different sampling rates (Fig. 10).

VII. DISCUSSION

If we make some simplifying assumptions, such as that the
noise is small, bandwidth limited and uncorrelated and that the
pulse amplitude is constant, we can write (1) as:

(9)

Fig. 9. Dependence of the standard deviation on sample rate for (LSO-
XP2020).

Fig. 10. Dependence of the standard deviation on number of bits for (LSO-
XP2020).

where t is the start time and the value of at the i:th
sample point.

Minimizing with respect to the time gives us the condition:

(10)

Here, is the derivative with respect to the start time of the
pulse. We have also made a linear Taylor expansion of
around the approximate start time . The ratio
can be interpreted as the sample variance along the time axis
if the noise contribution is small enough [5]. Let us call it .
Solving for gives us:

(11)

can be regarded as an estimator of how much
the pulse must be displaced to make it intersect the data point
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. It is thus a point estimator for . Expression (11) is then
a time variance-weighted estimator using all the available local
sample point estimators.

If we assume that the amplitude variances are the same for
all sample points along the pulse, the ratio of the inverse vari-
ances on the rising and the falling edge would be the ratio of the
squares of the slopes. If we incorporate the different numbers of
sample points on the two edges, which are proportional to the
inverse slopes, we realize that the ratio of the time information
from the rising and the falling edge would be the ratio of the
slopes (not squared). This means that if we have a symmetric
pulse we gain a factor if we use both edges for timing. If, on
the other hand, the ratio of the slopes are 1:10 we would only
gain about 5% . This explains the rather modest
gain when using the full statistical treatment.

Although the correlation time is small in this case (about 5
ns, see Fig. 6) it is sufficiently large to involve all sample points
along the rising edge, which means that the information from
one trigger level and the combined information from all points
on the rising edge are not very different. This explains why ana-
logue timing performs as well as it does. The rather poor per-
formance of the cross-correlation method is due to the influence
of coherent noise and the fact that the reference pulse we use is
slightly larger than the “true” reference pulse, due to the influ-
ence of alignment. Without these shortcomings it should have
been somewhat better than DCFD.

In Fig. 9 we see that there is a limit beyond which increasing
the sample rate does not lead to improved performance. This is
in agreement with the Nyquist criteria. However, the bandwidth
limit is seldom uniquely defined. There is usually considerable
signal power above the 3-dB bandwidth limit. We also have the
effect of the digitization, which introduces high frequency noise.
We see that increasing the bandwidth compensates errors intro-
duced by the digitization process (Fig. 10), which is expected.

Equation (11) also help us to understand the argument of three
sample points on the rising edge (in the introduction). If we
have many sample points the combined variance from different
sample points will be independent of their exact position (phase
independence). After a small phase shift those who gain preci-
sion compensate the samples that lose precision. This is not true
for a small number of points. The combined variances from two
sample points in the beginning and in the end of the leading edge
are much larger than one variance at the steepest part. We can
also understand that although 3 points are desired on the rising
edge we do not need as many as 7 points over a symmetric pulse.

The desired sampling density also depends on the correlation
time. Precision is gained by increasing the sample rate as long as
it means that more independent measurements are included. A
point of diminishing return is reached when the sample distance
becomes smaller than the correlation time.

There are different ways to improve the results presented
here, but we expect that their effect will be minor. Removing
the small but interfering coherent noise is one. Re-measuring
the impulse response with an extended time range, using the
same PMT/base in the timing set-up, is another way. Further
improvement could be achieved by removing the deformation
of the reference pulse due to the alignment process. This could
be done by de-convolution. Similarly it would be desirable to

remove the alignment artifact in the covariance matrix. We
can achieve this by using a covariance matrix calculated from
expression 7. Improving the processing efficiency would allow
a larger number of samples to be used in the analysis. Finally
we could improve the model and base the analysis on the fact
that we have Poisson statistics (M5 in Table I and expressions
5 and 6).

VIII. CONCLUSION

The most common digital timing method is to use matched
filter techniques to process the sampled data. However, matched
filters assume stationary noise. For the case of positron annihi-
lation studied with LSO and XP2020 we have shown that using
a method for the non-stationary case derived from “first prin-
ciples”, the least square method, can improve the timing with
at least 30 ps. Preliminary measurements indicate that the im-
provement is better when the correlation time is longer such
as when using APDs instead of PMTs. With longer correlation
time the consequence of neglecting its influence is, of course,
more severe.
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