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This article provides a unified look at MOSFET model parameter extraction methods that rely on the
application of successive differential and integral operators, their ratios, and various other combinations
thereof. Some of the most representative extraction procedures are assessed by comparatively examining
their ability to extract basic model parameters from synthetic MOSFET transfer characteristics, generated
by an ad hoc minimalist four-parameter model. The model used, comprised of a single polylogarithm
function of gate voltage, approximately describes in a very concise manner the essential features of MOS-
FET drain current continuously from depletion to strong inversion. The exponential-like low voltage and
monomial-like high voltage asymptotes of this simple model are conveniently used to analyze and com-
pare the different extraction schemes that are founded on successive differentiation or integration. In
addition to providing a combined view useful for comparative methodological appraisal, the present uni-
fied analysis facilitates visualizing and exploring other potentially promising extraction strategies beyond
the straightforward use of successive differential and integral operators and their ratios. We include
examples of parameter extraction from measured transfer characteristics of real experimental MOSFETs
to comparatively illustrate the actual numerical implementation of typical successive differential and
integral operator-based procedures.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Efficient parameter extraction strategies are essential for effec-
tive use of MOSFET compact models in circuit design and simula-
tion. Model parameter extraction schemes and procedures are
also indispensable tools to support device design assessment, tech-
nology reliability evaluation, and production yield analysis. Over
the years numerous schemes have been devised to permit, facili-
tate and expedite the extraction of MOSFET model parameters
[1–11]. Some schemes directly extract the parameters from the
measured current–voltage characteristics or from their numeri-
cally calculated first and higher order derivatives, while others
make use of certain auxiliary functions that typically involve calcu-
lating certain ratios of the drain current and its derivatives.
Although differentiation of MOSFETs’ measured current–voltage
characteristics is crucial for describing and analyzing device oper-
ation, performing successive (repeated) numerical differentiation
operations directly on raw and usually noisy experimental drain
current data might not always be the most desirable practice,
since any noise present would be repeatedly magnified by
differentiation. Thus, some sort of noise-canceling or mitigating
data-smoothing processing means is frequently included into any
differentiation-based model extraction procedure [12–14].

Because numerical integration inherently diminishes measure-
ment noise instead of enlarging it as differentiation does, our group
has been advocating for a while the use of integration-based aux-
iliary functions, as an advantageous alternative to the traditionally
used differentiation-based model parameter extraction techniques
[15–23]. Numerical integration has already proved to be a useful
tool for model parameter extraction in various situations where
noisy experimental data is present [24], as well as for other kinds
of analytical tasks, such as assessing harmonic distortion, for
example [25–27].

The motivation of this article is to offer a unified systematic
overview of successive differential and integral operators used in
MOSFET model parameter extraction procedures. This approach
allows a methodical classification and analysis of existing
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procedures that are based on both types of these operators, and on
combinations of two or more of them. The unified vision offered
here greatly facilitates revealing the analogous procedural extrac-
tion features, and helps identify other possible successive operator
combinations that could turn out to be useful for constructing new
MOSFET model parameter extraction procedures. This type of joint
look at differentiation and integration is a useful means to compar-
atively analyze model parameter extraction procedures in general,
as has been done recently to compare existing methods to extract
the series resistance of solar cells [28].

This article’s structure is as follows: In Section 2 we introduce a
novel minimalist general model of MOSFET transfer characteristics.
This model consists of a simple equation, based on a polylogarithm
function, which is continuously valid from sub-threshold to strong
conduction. Its main purpose is to act as a simple convenient tool
to analytically generate the synthetic transfer characteristics used
to illustrate and compare all the different extraction procedures
that will be analyzed throughout this article. The adequacy of this
new abridged model as a sufficient general description of transfer
characteristics will be verified in a particular example to model the
transfer characteristics of experimental poly-Si Nano-Wire MOS-
FETs. Original measured data and the resulting playback using this
model are later shown in Fig. 8 of Section 8.

A short-hand notation to represent successive operators in a
concise manner will be briefly presented in Section 3 to be used
throughout the text for brevity’s sake. In Section 4 we introduce
the unified expression to generically represent any successive
operator in the abbreviated notation.

In Section 5 we describe the use of zero, first and higher order
operators, and discuss some archetypal single operator-based
extraction procedures. We then present in Section 6 some of the
most commonly used procedures that are based on ratios of succes-
sive differential and integral operators. We describe the reasons
behind the idea of the generic successive operator ratio, and discuss
some important illustrative examples, such as the Transconduc-
tance-to-Current Ratio (TCR), the H1 function, and the Y function.

The new concept of using successive operator triplets for
parameter extraction is introduced in Section 7. The possible use
of such triplets is illustrated by applying some of them to an
extraction application. Additionally, in this section we discuss
how to best choose an operator triplet’s successive order from a
qualitative point of view.

Section 8 presents a practical application example of parameter
extraction from experimental Poly-Si Nano-Wire MOSFETs transfer
characteristics measured in the linear and saturation operation
regions. The effect of real measurement noise on the extraction
procedure and on the ensuing accuracy of the extracted parame-
ters is illustrated using the measured data. Special focus is placed,
within the framework of this unified view, on the comparison of
the advantages and disadvantages of applying differential opera-
tor-based procedures versus applying their equivalent integra-
tion-based counterparts.

Section 9 presents the various types of successive operator
methods classified according to their utility to extract particular
model parameters. Finally, Section 10 offers an overall consoli-
dated picture and some general concluding remarks and consider-
ations. An Appendix A is also included to provide some features of
the polylogarithm function, relevant to the use of the presently
proposed model.
2. A simple empiric MOSFET transfer characteristics model

In order to be able to compare the various differential and inte-
gral operator-based MOSFET model parameter extraction concepts
and techniques, we need to apply each extraction procedure to a
set of characteristics synthetically generated by the same MOSFET
model. The model to be used for this purpose must be simple in
mathematical terms and as minimalist as possible in the number
of parameters it contains.

There have been several attempts and proposals for simple
transregional single-equation MOSFET models, with only a few
intuitive parameters, that cover sub-threshold as well as above-
threshold regions [29–31]. The specific model that we use here
to generate, test and compare extraction procedures is not crucial,
as long as it is generic enough to satisfactorily describe the most
essential physical features represented by the model parameters
that we wish to extract. In that respect, and bearing in mind that
accurate threshold voltage determination is one of the most vital
aspects of parameter extraction, the model needs to describe the
MOSFET’s transfer characteristics by a simple continuous mathe-
matical function that can be repeatedly differentiated within the
threshold transition region. On the other hand, these attributes
should be possible without having to resort to any of the many
existing mathematically complicated MOSFET models. With these
premises in mind, we present in the following paragraphs a simple
empiric model that is able to satisfactorily describe the essential
quasi-static features of a generic MOSFET’s transfer characteristics,
as a practical way of comparing the several parameter extraction
procedures that will be analyzed here.
2.1. A novel transregional polylogarithmic model equation

We propose here a novel empiric transregional (continuous)
mathematical description capable of approximately modeling the
most relevant quasi-static features of the transfer characteristics
of a broad variety of inversion mode MOSFETs, including conven-
tional mono-crystalline, amorphous, poly-crystalline and organic
devices [32], and perhaps some unconventional MOSFETs as well.

The derivation of the present model is outside the purpose of
this article. Suffice to say that it is an empiric formulation phenom-
enologically motivated by the gate voltage dependence of the total
carrier density in the MOSFET’s channel. It is mathematically
described by a function [33] (see Appendix A) inspired by the poly-
logarithm representation of the Fermi–Dirac Integral (FDI) [34,35].
Thus, and without further justification, we propose expressing the
model using a polylogarithm function of the gate voltage, VG, as a
generic ‘‘first level’’ quasi-static description of a MOSFET’s transfer
characteristics:

IDðVGÞ ¼ �K Lim �e
VG�VT

n vth

� �
; ð1Þ

where Lim(�) stands for the polylogarithm [33] of order m and argu-
ment �exp(�) [36]. We adopt this simple Eq. (1) as the core struc-
ture of the proposed model. It contains only the essential quasi-
static features, which are represented by four basic parameters:
(i) a generic specific current parameter K, with global units of
Amperes, which reflects physical and geometrical characteristics
and depends on the magnitude of the drain voltage, VD, and could
eventually include an additional dependency on VG; (ii) a dimen-
sionless sub-threshold factor n = SS ln(10)/vth, where SS is the so-
called Sub-threshold Slope or Swing, with units of Volts/decade of
drain current; (iii) an explicit threshold voltage VT (or Von as in other
models) with units of Volts; and (iv) a dimensionless above-thresh-
old monomial order exponent m, representing the effect of mobility
degradation or enhancement, and possibly also including the effect
of significant parasitic source and drain (RSD) series resistance. Thus
in general m – 1, unless both of these effects were to be taken care
of externally to an idealized intrinsic MOSFET core model with an m
equal (or very close) to unity.
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2.2. Comparison with other models

The presently proposed model, as defined by the polylogarithm
function in (1), mathematically resembles the form of the well
known EKV model, where the drain current is empirically
described by a function of the type (ln(1 + ex))2 [31]. The form of
the EKV model is very similar to the present model, since its func-
tion is nothing more than the square of a polylogarithm of order
m = 1, as pointed out below in (2). Furthermore, the proposed
model defined by (1) also bears a general resemblance to another
well known model: the ACM model, which is based on a more
physically meaningful Lambert W function-type equation [31],
instead of the more empirical polylogarithm form of the present
and EKV models.

The present transregional model is continuous and may be con-
tinuously and repeatedly differentiated throughout depletion,
weak, moderate, and strong inversion regions of operation. It is
also analytically and numerically manageable, given that major
symbolic and numeric mathematical software packages, such as
Mathematica and Maple and others, already have efficient built-in
algorithms in their libraries to calculate the polylogarithm func-
tion. Moreover, it is foreseeable that most circuit simulation pro-
grams, that have not yet done so, will soon seamlessly
incorporate this and other useful mathematical functions, such as
the important LambertW function [37,38], that are indispensable
for proper electron device modeling and simulation.

Unlike most other continuous transregional MOSFET models,
the present abridged description (1) offers the advantage of explic-
itly incorporating the threshold voltage, VT, among its four basic
parameters. Such unequivocal presence of VT in the model equation
constitutes a necessary characteristic for an unambiguous valida-
tion of any threshold voltage extraction procedure. Satisfactory
extraction of the above mentioned basic four parameters consti-
tutes the basis for judging the adequacy of any prospective auxil-
iary function for parameter extraction purposes.

Idealized MOSFET transfer characteristics – with perfectly lin-
ear current above VT due to the absence of any VG-dependence of
the mobility or significant RSD – can be modeled with (1) by letting
the polylogarithm’s order be unity (m = 1). In such case this model
(1) reduces to an elementary expression of the form (see (A2.9) in
Appendix A):

IDðVGÞjm¼1 ¼ K ln e
VG�VT

n vth þ 1
� �

: ð2Þ

At gate voltages below VT the above Eq. (2) becomes an expo-
nential function of VG, and at gate voltages well above VT it
becomes a linear function of VG. In contrast to (2), the use of an
arbitrary order polylogarithm in the proposed model (1) allows
accounting for the presence of nonlinear drain current behavior
above VT, approximately described by a power function (a mono-
mial function of order m – 1).

2.3. Above- and below-threshold asymptotes

Let us now take a closer look at the low and high VG asymptotes
to verify that (1) is indeed adequate to describe in general the
expected below- and above-threshold transfer characteristics of
MOSFETs. At high gate voltages the asymptote of (1) is a monomial
function of order m given by [39]:

IDðVG >> VTÞ )
K

C mþ 1ð Þ nv thð Þm
VG � VTð Þm ; ð3Þ

where C is the Gamma function [40].
Therefore, the use of this model (1) implies the assumption that

it is possible to approximately describe the above-VT drain current’s
strong conduction non-linear behavior by a single monomial-type
function of VG of order m – 1. This assumption is particularly well
suited for amorphous, poly-crystalline and organic MOSFETs,
whose above-VT drain currents are commonly modeled by a frac-
tional order power function of VG (an mth order monomial on VG

with a fractional value of m) [10,32,41–44]. Although monomial-
type descriptions of strong inversion, such as (3), have been tradi-
tionally reserved for non-crystalline MOSFETs, we propose to
extend such monomial portrayal to other types of FETs, as a useful
and sufficiently adequate first level generic approximation of the,
usually non-linear, above-VT behavior observed in general in most
inversion mode MOSFETs. Note that specific values of m = 1 and
m = 2 in (3) respectively correspond to the classical ‘‘first level’’
models of the above-VT transfer characteristics in the linear (low
VD) and to the saturation (high VD) regions of intuitively idealized
conventional bulk-type mono-crystalline inversion mode MOSFETs.

A monomial description of the above-VT drain current at low VD

could be interpreted assuming that any non-unitary value of m
includes the portrayal of a gate voltage dependence of the mobility,
and could also represent the degradation effect caused by parasitic
source and drain series resistance (RSD), whenever it is decided not
to treat it as an extrinsic effect. To spell out this kind of interpreta-
tion of m, we may split this exponent into a sum of two parts:
m = 1 + b, where b is meant to account for the gate voltage depen-
dence of the mobility (and the effect of RSD if that where the case).
Thus, at low VD, values of m between 0 and 1 (that is �1 < b < 0) are
indicative of mobility (and/or RSD) degradation; whereas values of
m > 1 (that is b > 0) are indicative of the manifestation of mobility
enhancement, a phenomenon frequently observed in non-crystal-
line devices [45]. A similar interpretation could be applied to high
values of VD above saturation, except that in that case m = 2 + bsat.

The below-VT drain current of conventional inversion mode
MOSFETs is usually dominated by diffusive transport, represented
by exponential behavior that is adequately described by the low
voltage asymptote of the simple model (1) given by:

IDðVG << VTÞ ) K e
VG�VT

n vth ; ð4Þ

This below-VT drain current Eq. (4) is independent of m and for
most MOSFETs increases exponentially with gate bias, VG, accord-
ing to a sub-threshold characteristic parameter n, until it
approaches the threshold voltage VT in the transition region, where
its behavior changes from exponential-like to monomial-like.
Parameter n defines the Sub-threshold inverse Slope or Swing by
the relation: SS = ln(10)nvth, which is usually expressed in units
of mV/decade of drain current. In real inversion mode MOSFETs
this parameter usually is n > 1, corresponding to SS P 60 mV/dec
at T � 300 K.

Fig. 1 presents typical synthetic transfer characteristics in linear
and semi-logarithmic scales, as simulated with the presently
proposed simple model defined by (1), using parameter values
indicated within the figure. The drain current curves illustrated
in Fig. 1 exhibit the expected exponential-type sub-threshold
behavior and the above-VT super-linear monomial type behavior
that correspond to the given values of n and m.
3. Shorthand notation for successive differential or integral
operators

The intended meaning attributed here to successive differential
or integral operations is the action of computing a derivative or an
integral of the original function, successively repeated a certain
number of times with respect to a specified single variable. In
the present context of parameter extraction procedures, this
means that the actual numerical operations of either differentia-
tion or integration will be repeatedly performed, a certain number



Fig. 1. Illustrative example of generic synthetic MOSFET transfer characteristics as
generated with the proposed abridged model of (1) (solid black lines). Also shown
in semi-logarithmic scale with broken lines are the above threshold (VG� 1 V)
(short dash blue line) and below threshold (VG < 1 V) (Long dash red line)
asymptotes of (1), corresponding to (3) and (4) respectively. A horizontal broken
line is also shown to indicate the critical value of drain current that would define
threshold according to a constant current criterion (9). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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of times indicated by the operator order’s absolute value |a|, on a
MOSFET’s drain current numerical data, that has been measured
by varying the applied gate voltage while keeping the drain voltage
constant at a certain value.

For brevity’s sake, a superscript-style shorthand notation will
be used throughout the text to indistinctly represent successive
(successively repeated) differential or integral operations with
respect to gate voltage. This abbreviated operator notation is as
follows:

IðaÞD ðVGÞ ¼
daIDðVGÞ=dVa

G when a � 1
IDðVGÞ when a ¼ 0R VG

0

R VG
0 . . .

R VG
0 IDðvÞdv�1dv�2 . . . dva when a � �1

8><
>: ;

ð5Þ

where the operator’s order (a) can be any real integer number. A
value a = 0 represents the function itself (the device’s measured ori-
ginal ID). The sign of a defines the type of operation that is to be per-
formed: positive values of a denote differentiation, whereas
negative values of a denote integration. In the case of integration,
we will assume here, for simplicity’s sake and without any loss of
generality, that the magnitude of the function ID is zero (or insignif-
icantly small) at the lower limit of integration, so that the definite
integrals in (5) may be conveniently subsumed as indefinite inte-
grals. When in actual practice the magnitude of the function ID can-
not be assumed to be zero, because of the presence of significant
leakage current, that value must be used as the lower limit of inte-
gration and definite integrals must be used for actual computation.

4. Application of successive operators to the present model

Assuming that the MOSFET’s transfer characteristics may be
adequately modeled by (1), the application of any successive oper-
ator of order a to (1), be it differential (a > 0) or integral (a < 0),
always yields an expression that may be written in the following
general form:

IðaÞD ¼ �K nv thð Þ�a Lim�a �e
VG�VT

n vth

� �
: ð6Þ

Thus, any successive operator of order a when applied to the
current, as modeled by a polylogarithmic function of order m
described in (1), is given by the expression (6) which also contains
a polylogarithm but in this case of order (m–a). This simply means
that performing a successive operation of order a (a > 0 for differ-
ential or a < 0 for integral) on the polylogarithm-type current
expression decreases (when a > 0) or increases (when a < 0) its
order m by an amount equal to |a|. Notice that the zero order
(a = 0) operation, ID

(0), translates (6) into the original function
itself, given by (1).

Analyzing the asymptotic behavior of (6), considering (3), we
observe that well above VT the function (7) tends asymptotically
to a monomial function of gate voltage of order (m–a):

IðaÞD )
K nv thð Þ�m

C m� aþ 1ð Þ VG � VTð Þm�a
; for VG >> VT ð7Þ

Likewise, considering (4) we observe that well below VT (6)
tends asymptotically to an exponential function of gate voltage,
which is independent of m as expected:

IðaÞD ) K nv thð Þ�a e
VG�VT

n vth ; for VG << VT : ð8Þ

Any member of the family of successive operators defined by
(6) may be used, either singly or combined in groups, to construct
clever numerical calculation procedures which when applied to the
MOSFET’s measured current–voltage characteristics facilitate the
extraction of the device’s model parameters. In what follows we
will analyze several of the most common and presently used
extraction procedures, and will later discuss some other possible
schemes.

5. Extraction procedures based on a single operator

5.1. The zero order operator

Strictly speaking the drain current is the zero order (a = 0) oper-
ator of itself (ID

(0)). Thus, the simplest single operator threshold
voltage extraction procedure is the well known and Industry-
favored ‘‘constant current’’ method [46–50]. Extraction of the value
of the threshold voltage parameter, VT, using this definition
involves the trivial chore of looking up the value of gate voltage
that corresponds to a certain pre-defined value of drain current
in the measured transfer characteristics data. Because of its sim-
plicity and its fast implementation this constant current method
is usually preferred in industrial testing settings.

Although the value of constant drain current to use is arbitrary,
its choice is not directly trivial. Traditionally this value has been
independently decided in-house by each user on the basis of some
more or less arbitrary particular criterion. To avoid such ambiguity
there have been proposals to generalized the choice based on some
sort of standard current density criterion [47,49]. Here we suggest
to use a single criterion to establish a normalized universal con-
stant current value by letting VG = VT in (1), as illustrated by the
horizontal dashed line in Fig. 1. Accordingly, this normalized refer-
ence value will be given by the following defining equation (see
(A4.2) and (A4.3) in Appendix A):

IDðVG ¼ VTÞ
K

¼ �Lim �1ð Þ ¼
lnð2Þ; at m ¼ 1

� 21�m � 1
� �

f mð Þ; for m > 1

(
; ð9Þ

where f is the Riemann Zeta function [51]. Therefore the normal-
ized values that correspond to the condition VG = VT, given by (9),
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have a slight dependence on the monomial order m, varying from
0.69 at m = 1, to 0.82 at m = 2, to 0.90 at m = 3.

5.2. First order operators

Perhaps the most common way to extract the threshold voltage
parameter of a MOSFET is the classical method based on the ‘‘linear
extrapolation’’ of the strong inversion (above-VT) drain current to
zero (gate voltage intercept). Performing such extrapolation entails
calculating the a = 1 order operator, that is, the first order deriva-
tive ID

(1) (slope) of the transfer characteristics. This method is
based on the assumption that the ideal strong inversion (above-
VT) drain current is a linear function (m = 1) of VG. This assumption
is frequently implicitly taken for granted for VT extraction pur-
poses, in spite of the fact that such ideal linearity is theoretically
impossible [4].

The drain current measured in strong inversion of real mono-
crystalline MOSFETs usually exhibits sub-linear (0 < m < 1) behav-
ior due to the combined effects of mobility degradation and para-
sitic source and drain resistance, as well as several other secondary
effects. Nonetheless, is not uncommon to see the use of this linear
extrapolation method for VT extraction, even when the above-VT

transfer characteristics appear to be clearly non-linear. To do so,
the method is forced upon the non-linear characteristics by extrap-
olating a line tangent to the point where the transfer function pre-
sents its maximum slope (the inflexion point of ID

(0) or maximum
of the transconductance ID

(1)). This maximum of the transconduc-
tance exists if and only if m < 1 in (1), that is, as long as there is
mobility degradation or parasitic series resistance present, in
which case the maximum is uniquely defined by the location of
ID

(2) = 0 (the zero crossing of the second derivative). Since the loca-
tion of this maximum is strongly dependent on mobility and para-
sitic resistance effects, the VT so extracted by extrapolation is
highly questionable value. On the other hand, a maximum of the
transconductance might not even exist in certain cases, especially
when there is mobility enhancement (m > 1) instead of
degradation.

A general word of caution is called for whenever regional
extrapolation-based extraction procedures are used. Any parame-
ter value extracted in this manner should always be understood
only as an extended description of the physical phenomenon it
represents. It should be remembered that the phenomenological
behavior description that is assumed to be valid within the region
where the extrapolation originates from, should not be extended
by the extraction procedure to a different region where it is not
strictly valid. Therefore, in general it is preferable, whenever possi-
ble, to extract a phenomenological transition parameter such as VT

from the function’s transition region itself, rather than by extrapo-
lating a behavioral description belonging to a different operation
region.

It is also possible to use the a = �1 order operator in parameter
extraction, that is, the first order integral ID

(�1) (area) of the trans-
fer characteristics. To the best of our knowledge, the use of the
integral ID

(�1) of the current was first proposed by Araujo and Sán-
chez [52] for extracting series resistance in solar cell models, and it
was later used for threshold voltage extraction in MOSFET models
[24,53].

5.3. Higher order operators

Higher order successive operators are also very useful for model
parameter extraction purposes. Repeated differentiation of the
drain current is the most emblematic example for extracting the
value of the threshold voltage, VT [54]. It belongs to the class of
transitional techniques used to extract VT instead of the classical
linear extrapolation procedure. In its simplest form it entails find-
ing the location of the maximum of some high order (a > 1) deriv-
ative ID

(a) of the MOSFET’s transfer characteristics.
Considering an ideal MOSFET’s transfer characteristics that are

hypothetically described in strong inversion by a straight line (a
monomial function of gate voltage with m = 1), the second order
(a = 2) differential operator ID

(2) should exhibit a maximum located
on the VG axis precisely at VT. This is the basis of the extraction pro-
cedure commonly known as ‘‘maximum of the second derivative’’
or ‘‘maximum of the transconductance’s slope’’ technique [10,55]
which is the most representative example of successive differential
operator usage for parameter extraction purposes. The extraction
of VT only requires numerically locating the value of VG where
the third order (a = 3) differential operator changes sign, i.e., ID

(3)

(VG = VT) = 0, the location where ID
(3) crosses the VG axis.

The threshold voltage extracted by this technique can be right-
fully identified as a ‘‘transitional’’ kind of VT value, because the
extraction occurs from within the very region where the actual
transition from sub- to supra-threshold behaviors takes place.
The value of VT so extracted has the added advantage of being less
dependent upon other phenomena, since the current in this region
is relatively more immune to other secondary effects such as
mobility degradation and parasitic source and drain resistances.

Regrettably the ‘‘maximum of the second derivative’’ technique
is often misused. The procedure is sometimes applied without
valid justification to extract the VT of FETs that do not exhibit
unmistakable linear currents in strong inversion. We will attempt
to illustrate this misconceived usage by comparing two normalized
hypothetical transfer characteristics with equal values of VT but
dissimilar above VT conduction mechanisms: one ideally linear
(m = 1) and the other non-linear (m = 1.5). The non-linear behavior
may be caused by different phenomena, for instance, by some kind
of VG-dependent mobility enhancement, as frequently observed in
non-crystalline MOSFETs.

Fig. 2 presents the first three successive derivatives (a = 1, 2,
and 3) of both types of hypothetical transfer characteristics. As
the figure indicates, the third order (a = 3) differential operator
ID

(3) correctly crosses the VG axis exactly at VT in the case of the lin-
ear above-VT characteristics (m = 1), but not so in the case of the
non-linear (m = 1.5) behavior. The reason is easily visualized using
the present abridged model (1) by noticing in (6) that any succes-
sive derivative ID

(a), when evaluated at threshold, VG = VT, contains
a polylogarithm of order (m–a) and argument (�e0 = �1), as indi-
cated below:

IðaÞD VGð Þ
���

VG¼VT

¼ �K nv thð Þ�a Lim�a �1ð Þ: ð10Þ

In order for (10) to become nontrivially zero it is necessary that
the polylogarithm in (10) be equal to zero, i.e. Lim–a (�1) = 0. Now,
the only polylogarithm that becomes zero at a value of its argu-
ment equal to �1 is the polylogarithm of order equal to �2 (see
(A2.2) and (A4.1) in Appendix A). Therefore, if we let m–a = �2 in
(10) then Li�2(�1) = 0.

IðaÞD VGð Þ
���
a¼mþ2; VG¼VT

¼ �K nv thð Þ�m�2 Li�2 �1ð Þ ¼ 0 : ð11Þ

Solving for the operator order a we reach the following impor-
tant conclusion:

‘‘For any successive differential (a > 0) operator ID
(a) of the

transfer characteristics to become zero exactly at threshold
(VG = VT) its order a must be two orders higher than the order
m of the monomial function that describes its above-VT transfer
characteristics, that is a = m + 2.’’

Or alternatively stated:

‘‘For any successive differential (a > 0) operator ID
(a) of the

transfer characteristics to exhibit a maximum precisely at



Fig. 2. Hypothetical synthetic transfer characteristics, and their first three succes-
sive derivatives (a = 1, 2, 3), calculated using (6) with the same n = 1 and VT = 0.5 V,
for three different values of the monomial order parameter: m = 0.75 (short dash
green line), m = 1.0 (continuous red line) and m = 1.5 (long dashed blue line). The
slope (ID

(2)) of the transconductance (ID
(1)) has a maximum at VG = VT, if ID

(3) = 0 at
VG = VT, which only happens when the above-VT current is a perfectly linear (m = 1)
function, as illustrated. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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threshold (VG = VT) its order a must be one order higher than the
order m of the monomial function that describes its above-VT

transfer characteristics, that is a = m + 1.’’

Consequently, according to this simple but universal rule, the
second derivative of the transfer characteristics (commonly
referred to as the transconductance slope) will exhibit a maximum
precisely at threshold (VG = VT) if and only if the above-VT transfer
characteristics are sufficiently well represented by a linear func-
tion of VG (a monomial of order m = 1).

Fig. 2 illustrates that when m = 1 the second order (a = m + 1 = 2)
differential operator (the second derivative ID

(2) of the current
which corresponds to the transconductance’s slope) has a maxi-
mum precisely at VT. In other words, the third order
(a = m + 2 = 3) differential operator ID

(3) crosses the VG axis precisely
at threshold (VG = VT), meaning that ID

(3) = 0 at VG = VT.
However, the same will not be the case when the above-VT

transfer characteristics are significantly nonlinear (m – 1). An
illustrative example of this fact is presented also in Fig. 2, with
above-VT transfer characteristics described in this case by a mono-
mial function of order m = 1.5. We observe that now the second
order (a = 2) differential operator ID

(2) (the second derivative or
transconductance slope), does not have a maximum at VT, and con-
sequently the third order (a = 3) differential operator ID

(3) does not
cross the VG axis at threshold, that is, ID

(3) – 0 at VG = VT. In this case
the polylogarithm’s order in (10) is – �2, as needed to become
zero at VG = VT. Instead it is now equal to m–a = 3/2–3 = �3/2
which is – �2.

Using this value of �3/2 for the polylogarithm’s order yields
�Li�3/2(�1) = 0.1187, which is clearly – 0. In fact, the third order
(a = 3) differential operator ID

(3) crosses the VG axis at a value of
the polylogarithḿs argument of � �3.03, since Li�3/2(�3.03) � 0.
Obviously, if we where to take this ID

(3) = 0 (VG axis intercept) point
as representing the location of VT in the case of these transfer char-
acteristics which are non-lineal above-VT and described by a mono-
mial of order m = 1.5, we would be making an error of � 29 mV at
room temperature (with n = 1 and vth = 0.0259V). Considering that
in this example VT = 0.5 V, the corresponding relative error would
be � 5.8%.

It immediately follows from the above discussion that for an
m = 2, which would correspond to the classic first level theoretical
descriptions of the above-VT transfer characteristics in the satura-
tion (high VD > VDsat) operation region of an ideal bulk-type MOS-
FET, the threshold voltage saturation value VTsat should be
extracted from the location of the maximum of its third derivative
ID

(3), or what is the same, by numerically finding the VG axis crossing
of its fourth derivative, ID

(4) = 0. In such case we ought to name this
procedure as the ‘‘maximum of the third derivative’’ technique.

The foremost drawback for practical implementation of this
technique in threshold voltage extraction procedures is its reliance
on successive numerical differentiation of the measured transfer
characteristics. Numerical calculation of successive derivatives is
very sensitive to the presence of small perturbations (errors or
noise) of the measured data. In principle it yields highly noisy
and uncertain results that are generally inadequate for reliable
parameter extraction purposes. Such data imprecision can be mit-
igated by the use of data smoothing steps [14], or by applying some
kind of stable numerical differentiation technique [12]. A very
powerful technique, based on Tikhonov’s regularization theory,
has been reported to allow stable threshold voltage extraction
from the maximum of the measured current’s second order deriv-
ative [13].

We are then lead to the conclusion that this method, based on
the location of the maximum of some high order derivative, works
well for extracting a transitional-type value of VT, when the
observed above-VT strong conduction behavior may be sufficiently
well represented by a monomial-like function of positive integer
order. Conversely, whenever the device’s above-VT strong conduc-
tion behavior is better described by a positive fractional power
function (a fractional order monomial-like function) this succes-
sive differentiation method will fail to extract a correct value of
VT. This is so because the fractional order prevents any successive
derivative of the current (ID

(a)) from crossing the VG axis precisely
at the location of VT.

As a final thought on this topic, we call attention to the impor-
tant fact that, since the order of the monomial-like strong conduc-
tion current behavior is always positive (m > 0) for any kind of
practical MOSFET, the order of the operator needed to observe a
maximum must always be positive (a = m + 1 > 0). The immediate
consequence of this observation is that only differential, and not
integral, successive operators may be used to implement parame-
ter extraction procedures of this kind.

We have seen that single successive operators of order a P 0
are by themselves helpful tools to use for parameter extraction
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purposes. We have presented constant current, linear extrapola-
tion, and transitional types of single operator extraction proce-
dures as good examples. On the other hand, integral operators
(of order a < 0) are not in general very useful for parameter extrac-
tion purposes when used singly, except for very few particular
applications, such as eliminating the effect of parasitic resistances
from lumped parameter models [56,57]. However, both integral
and differential successive operators turn out to be valuable instru-
ments for MOSFET model parameter extraction when adequately
combined in the form of ratios, products, triplets and various other
assemblies. In the following sections we will discuss some of these
combinations of successive operators in a unified way.

6. Extraction procedures based on ratios of successive operators

When developing any kind of procedure for model parameter
extraction a fundamental aspiration is to have a method that is
able to extract each model parameter in such a way that its extrac-
tion is as unaffected as possible by the rest of the model parame-
ters. A common strategy is to cancel the effect of some
parameters while extracting the values of others. This chore may
sometimes be accomplished through the use of certain auxiliary
functions composed of successive operator ratios. An early use of
successive operator ratios can be found in a 1988 small signal eval-
uation of Schottky barriers and pn-junction I–V plots [58].

6.1. General expression of the successive operator ratio

In view of the generic operator definition given in (6) we can
easily recognize that the ratio of any two successive operators of
orders a and a � 1 is given by:

IðaÞD

Iða�1Þ
D

¼ 1
nv th

Lim�a �e
VG�VT

n vth

� �

Lim� a�1ð Þ �e
VG�VT

n vth

� � : ð12Þ

The most salient feature of any operator ratio is the ability to
cancel out the effect of parameter K by virtue of the division. This
is so as long as K itself is not a strong function of VG so that it may
be assumed to be a constant. Important as this cancelation might
be, it is not the only beneficial consequence of the ratio described
by (12). To visualize its possible usefulness, let us take a look at the
asymptotes of this ratio. First of all, recalling (7) we see that well
above VT the inverse of (12) asymptotically tends to:

Iða�1Þ
D

IðaÞD

) C m� aþ 1ð Þ
C m� aþ 2ð Þ

VG � VTð Þm�aþ1

VG � VTð Þm�a

¼ 1
m� aþ 1

VG � VTð Þ ; for VG >> VT ; ð13Þ

which is a linear (order = 1) monomial function of VG regardless of
the monomial order of the original transfer characteristics ID

(0) in
the strong inversion region (VG� VT). That means that above VT

the ratio is always a straight line. This is the most significant general
property of the generic ratio (12). It has important consequences for
parameter extraction, because it embodies a general procedure
capable of ‘‘linearizing’’ any MOSFET’s above-VT transfer character-
istics, regardless of the value of m. Therefore, its linearization capa-
bility is universal, working equally well on idealized hypothetical
characteristics in the so-called linear (m = 1) and saturation regions
(m = 2) regions, and on more physically real characteristics (m – 1)
resulting from significant mobility enhancement (m > 1), mobility
degradation (m < 1), or parasitic RSD (m < 1).

On the other hand, for values of VG� VT the polylogarithms in
the numerator and denominator of the RHS of (12) cancel each
other, since in that sub-VT region the value of the polylogarithm
[33] is independent of its order (see Appendix A). Therefore, and
in accordance with (8), this generic ratio (12) below VT tends
asymptotically to:

IðaÞD

Iða�1Þ
D

) nv thð Þ�a

nv thð Þ�aþ1 ¼
1

nv th
; for VG << VT ; ð14Þ

which is independent of m.
We conclude that any auxiliary function based on the generic

ratio of any two arbitrary but successive operators, as defined by
(12), when applied to a MOSFET’s transfer characteristics yields
at low VG� VT a constant value that is equal to the reciprocal of
the sub-threshold parameter nvth = SS/ln(10), as indicated in (14),
where SS is the Sub-threshold Slope or Swing in units of Volts/dec-
ade of drain current. Moreover, the reciprocal of this same ratio
defined by (12), when applied to the MOSFET’s transfer character-
istics always yields at high VG� VT a linear function of VG whose
reciprocal slope defines the value of parameter m and its extrapo-
lated VG axis intercept is located at VT, as indicated by (13).

We must insist again here that the VT value obtained by extrap-
olating (13) to the VG axis must be interpreted as a ‘‘regionally
extrapolated’’ type of parameter, because it is obtained by extend-
ing the drain current behavior of the above-VT region to the weak
inversion transition region, where the actual drain current behav-
ior is neither exponential nor monomial. Later on we will discuss a
procedure, also based on successive operator ratios, that allows
extracting a more phenomenologically correct ‘‘transition’’ type
of VT value from within the weak inversion transition region.

6.2. The Transconductance-to-Current Ratio

A specific example of a well known and commonly used auxil-
iary function is the Transconductance-to-Current Ratio (TCR)
[50,59–67]. This function consists of the ratio of the two successive
differential operators defined by setting a = 1 in (12), as indicated
below:

TCR 	 IðaÞD

Iða�1Þ
D

�����
a¼1

	 Ið1ÞD

Ið0ÞD

	 dID=dVG

ID
¼ d ln IDð Þ

dVG
: ð15Þ

In writing (15) we have called upon a basic calculus identity to
remind us that the TCR can be understood as the derivative of the
natural logarithm of the current with respect to gate voltage. The
TCR can be readily written in terms of the presently proposed
abridged model, setting a = 1 in (12) to yield the expression:

TCR ¼ 1
nv th

Lim�1 �e
VG�VT

n vth

� �

Lim �e
VG�VT

n vth

� � : ð16Þ

The significance of (16) stems from its remarkable ability to
extract useful information from every region of the MOSFET’s
transfer characteristics. In fact, it is easy to see that in addition of
canceling the effect of K, setting a = 1 in (13) and (14) the asymp-
totic behavior of TCR is:

1
TCR
	 Ið0ÞD

Ið1ÞD

) 1
m

VG � VTð Þ ; for VG >> VT : ð17Þ

TCR 	 Ið1ÞD

Ið0ÞD

) 1
nv th

; for VG << VT : ð18Þ

Up to this point we have only analyzed examples of parameter
extraction procedures based on differential operators (a P 0). Let
us now look also into some extraction procedures examples that
are based on integration (a < 0) instead of differentiation.
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6.3. The H1 function

Although using the TCR procedure is a widespread practice in
MOSFET parameter extraction, it is by no means the only succes-
sive operator ratio that is capable of achieving the same goal. In
fact, a conceptually analogous but less well known successive
operator ratio is the Integral-to-Current Ratio, or H1 auxiliary func-
tion [16,19,22,23]. This H1 function (its symbol is H because of his-
toric reasons and should not be confused with a Hermite
polynomial) was originally suggested as a means to extract the
model parameters of p-n junction models at very low forward volt-
ages [15]. The reciprocal of the H1 auxiliary function can be quickly
written using the presently proposed abridged model by setting
a = 0 in (12) to yield:

1=H1 	
IðaÞD

Iða�1Þ
D

�����
a¼0

	 Ið0ÞD

Ið�1Þ
D

¼ 1
nv th

Lim �e
VG�VT

n vth

� �

Limþ1 �e
VG�VT

n vth

� � : ð19Þ

To find the two asymptotes of H1 we set a = 0 in (13) and (14) to
yield:

H1 	
Ið�1Þ

D

Ið0ÞD

) 1
mþ 1

VG � VTð Þ ; for VG >> VT ; ð20Þ

and
1

H1
	 Ið0ÞD

Ið�1Þ
D

) 1
nv th

; for VG << VT : ð21Þ

Comparison of (18) and (21) indicates that H1 and 1/TCR
become identical at low VG� VT:

H1 )
1

TCR
; for VG << VT : ð22Þ

Likewise, comparison of (17) and (20) reveals that H1 and 1/TCR
are related at high VG� VT by a constant stipulated by the mono-
mial’s order m:

H1 )
m

mþ 1
1

TCR
; for VG >> VT ; ð23Þ

Fig. 3 illustrates the application of both the vthTCR and vth/H1

auxiliary functions, applying (16) and (19), to the synthetic transfer
characteristics of the test hypothetical MOSFET used in Fig. 1. At
low VG < VT both curves converge to the correct value of the reci-
procal 1/n = 1/5, as expected from their asymptotes respectively
defined in (18) and (21). Thus in general, and according to (14),
Fig. 3. vthTCR and vth/H1 of the synthetic characteristics shown in Fig. 1, as
calculated using (16) and (19). Both tend to 0.20 below threshold according to (18)
and (21), which is the correct value of 1/n considering that n = 5 in this example.
the sub-threshold parameter n (SS = ln(10) nvth) may be directly
extracted from the constant value that any successive operator
ratio ID

(a�1)/ID
(a) should reach below threshold.

Fig. 4 presents the reciprocals of the same two successive oper-
ator ratios shown in Fig. 3. As expected, the curves in Fig. 4 reach
the correct value of n below threshold (n = 5 in this example),
and also exhibit the expected linear behavior above threshold with
correct slopes of 1/m = 1/2 and 1/(m + 1) = 1/3 (m = 2 in this exam-
ple). Therefore according to (13) any successive operator ratio of
the type ID

(a�1)/ID
(a) can be plotted versus VG to extract the mono-

mial’s order from its above threshold reciprocal slope (m–a + 1).
For the example at hand, either 1/TCR (a = 1) or H1 (a = 0) may
be used to extract the monomial order from their above threshold
reciprocal slopes m and m + 1, as dictated by (17) and (20), respec-
tively, and shown in Fig. 4.

6.4. Transitional value of threshold voltage

It is clear that either one of the strong conduction straight lines
corresponding to the two successive operator ratios (a = 1 and
a = 0), shown for illustrative purposes in Fig. 4, if extrapolated to
intercept the VG axis define the same ‘‘extrapolated’’ value of VT,
which coincides with the expected VT = 1V assumed in this hypo-
thetical example. However any successive operator ratio ID

(a�1)/
ID

(a), such as TCR or or H1, can also be used to extract a ‘‘transition’’
type value of VT, that would physically represent the location of the
threshold transition point. Such transitional VT can be properly
defined as the VG axis location that corresponds to a certain given
fraction of the maximum value attained by the operator ratio in the
sub-threshold region. For the case of TCR a fraction of its maximum
in the sub-threshold region has been proposed to define the loca-
tion of VT [60,62].

The TCR or H1 auxiliary functions, or in fact any other arbitrary
ratio of successive operators ID

(a)/ID
(a�1) defined by (12), could be

used for this purpose. To establish in general what fraction of the
successive operator ratio maximum value corresponds to VG = VT,
we simply evaluate (12) at VG = VT and divide the result by the
ratio’s maximum value below threshold, which according to (14)
is always = 1/(nvth) for any successive operator ratio. This fraction
of the maximum at VG = VT is:

fraction ¼

IðaÞD

Iða�1Þ
D

����
VG¼VT

1
n vth

¼ Lim�a �1ð Þ
Lim� a�1ð Þ �1ð Þ : ð24Þ
Fig. 4. (vthTCR)�1 and H1/vth of the synthetic characteristics shown in Fig. 1, as
calculated using (16) and (19). Both tend to 5 below threshold according to (18) and
(21), which is the correct value of n. Above threshold they are linear functions with
reciprocal slopes of m and m + 1, in accordance with (17) and (20), respectively.



Fig. 5. Y function calculated according to (25) with the same n = 1 and VT = 0.5 V, for
four different values of the monomial order parameter m. When the above-VT

current is well described by a monomial-like function, this method can cancel out
the effects of mobility degradation only if the monomial order is very close to unity
(m � 1) (equivalent to h = 0 in (26)). In such case the resulting Y function is a
straight line for VG� VT, which may be extrapolated to intersect the VG axis at
VG = VT.
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Table 1 presents the fraction of below-VT maximum value of
two successive operator ratios, 1/H1 and TCR, that corresponds to
the location of the threshold voltage VT, for two values of above-
VT monomial order m. In the case of the present example (with
n = 5, m = 2 and VT = 1V), the values of 0.168 and 0.182 shown in
Fig. 3 define the location of VT using either TCR or 1/H1, respec-
tively. These two numbers correspond to 84% and 91% of the max-
imum value below threshold of TCR and 1/H1, respectively.

Again, it is important to keep in mind that this value of VT,
extracted from the location that corresponds to these fractions of
the below-VT maximum, as shown in Fig. 3, is a ‘‘transitional’’ type
of VT value. We must also point out that in this hypothetical exam-
ple the ‘‘transitionally’’ extracted value of VT = 1V exactly coincides
with its ‘‘extrapolation’’ type value of VT = 1V extracted by extrap-
olating the straight lines shown in Fig. 4.

In conclusion, either TCR or H1, or for that matter any other ratio
of successive operators ID

(a)/ID
(a�1) with arbitrary integer value of a

as defined by (12), may be directly used to extract the main param-
eters of this MOSFET’s transfer characteristics model: the Sub-
threshold Swing, SS = nvthln(10), the threshold voltage VT, the
strong conduction monomial exponent m, and finally, by back sub-
stitution, the coefficient K.

6.5. The ‘‘Y’’ function

Another auxiliary function that is sometimes used for parame-
ter extraction is the Current-to-Square Root of the Transconduc-
tance Ratio (CSRTR), for short usually referred to as the ‘‘Y ’’
function [68]. To the best of our knowledge, this method was inde-
pendently proposed and originally published in 1988 by Jain [2]
and by Ghibaudo [1]. In operator notation the ‘‘Y’’ function is:

Y 	 Ið0ÞD

ffiffiffiffiffiffiffi
Ið1ÞD

q�
: ð25Þ

The motivation underlying the use of such auxiliary function
seems to be an attempt to cancel out first order degradation effects
of both mobility and source and drain series resistance on the
otherwise linear behavior of the above-VT transfer characteristics,
which the method assumes may be described by the following spe-
cific function:

IDðVGÞ �
K

1þ h VG � VTð Þ VG � VTð Þ for VG >> VT : ð26Þ

Here the effective mobility is specifically described by an elemen-
tary level first order mobility degradation model which is simply
characterized by the factor h, that includes the mobility degradation
and the parasitic resistance effects. Dividing the drain current by
the square root of the transconductance in (25) serves the purpose
of canceling those effects [69,70]. Once the degradation effects are
canceled out, the resulting ‘‘Y’’ function is supposed to become a
straight line for VG� VT, which can be then extrapolated to inter-
sect the VG axis at VG = VT [71].

However, as Fig. 5 indicates, this method works well only as
long as the total degradation effects may be adequately approxi-
mated by a first order model such as (26). Otherwise the result
of calculating the ‘‘Y’’ function will inevitably result in a power
Table 1
Fraction of below-VT maximum value that according to (24) corresponds to VG = VT,
for two successive operator ratios (1/H1 and TCR) and two values of above-VT

monomial order m.

Ratio m = 1 m = 2

a = 0 (1/H1) 12 ln(2)/p2 � 0.84 p2/(9 f(3)) � 0.91
a = 1 (TCR) 1/(2 ln(2)) � 0.72 12 ln(2)/p2 � 0.84
function-type curve (a monomial with m – 1) which may not be
linearly extrapolated. Recently, a clever new method has been pro-
posed to linearize and thus improve the extraction precision of the
‘‘Y’’ function method [72]. The proposed procedure, which has been
applied to organic thin-film transistors (OTFTs) operating in the
linear regime, entails sequentially calculating the ‘‘Y’’ function
and then its H1 function. The linearity of the resulting curve allows
for the extraction of the threshold voltage and the mobility of the
OTFT [73].
7. Extraction procedures based on triplets of successive
operators

A straightforward interpretation of what the conceptual moti-
vations are for using either TCR or H1, readily suggests further
parameter extraction procedural possibilities, that could be assem-
bled by combining certain ratios, and which might be useful to iso-
late some parameters from the effects of others. We exemplify
below some of these possibilities.
7.1. Monomial order extraction

A potentially useful auxiliary function may be constructed by
multiplying two ratios of successive operators to form a general-
ized triplet of operators with successive orders of a � 2, a � 1,
and a, as described below:

IðaÞD

Iða�1Þ
D

Iða�2Þ
D

Iða�1Þ
D

¼ IðaÞD Iða�2Þ
D

Iða�1Þ 2
D

¼ m� a� 1ð Þ
m� a� 2ð Þ for VG >> VT : ð27Þ

Application of (27) to a MOSFET’s measured transfer character-
istics allows extracting the value of parameter m independently of
K and VT, and irrespectively of the value of a chosen. Solving (27)
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yields a closed form general formula for the reciprocal of the
above-VT monomial order m that is independent of all the other
parameters in the model:

1
m
¼

Iða�1Þ 2
D

IðaÞD Iða�2Þ
D

� 1

ða� 1Þ Iða�1Þ 2
D

IðaÞ
D

Iða�2Þ
D

� ða� 2Þ
for VG >> VT : ð28Þ

As it might be evident by now, in the above formulas a now
indicates the largest order of the three successive operator orders
(a � 2, a � 1, a) present in the triplet. The value of a in the triplet
may be any real integer. The actual value chosen is totally up to us,
although the decision should be based on practical considerations
to be discussed later.

An interesting case results by setting the largest order operator
a = 1. Doing so turns triplet (27) into the product of two already
familiar ratios, TCR and H1:

TCR H1 	
Ið1ÞD

Ið0ÞD

Ið�1Þ
D

Ið0ÞD

¼ Ið1ÞD Ið�1Þ
D

Ið0Þ 2
D

¼ m
mþ 1

for VG >> VT ; ð29Þ

which can be solved for the reciprocal of m to yield:

1
m
¼ Ið0Þ 2

D

Ið1ÞD Ið�1Þ
D

� 1 for VG >> VT : ð30Þ

Fig. 6 shows two examples of the application of Eq. (28) to the
synthetic characteristics shown in Fig. 1, using differentiation (a
triplet with a = 2), and integration (a triplet with a = �1). In both
cases the resulting auxiliary function tends to the expected value
of 1/m = 1/2 at high values VG.

7.2. Extraction of the threshold voltage

A closed form general formula for VT might be obtained from the
above-VT monomials of order m of the ratio of two successive oper-
ators, described by (13):

VT ¼ VG � m� aþ 1ð Þ I
ða�1Þ
D

IðaÞD

; for VG >> VT ; ð31Þ

Regardless of the value of a chosen, combining (28) and (31)
provides a formula to extract the value of VT independently of
the values of K and m:
Fig. 6. Two examples of extracting m by applying (28) to the synthetic character-
istics of the device of Fig. 1, calculated using triplet with a = 2 (differentiation)
(continuous line) and triplet with a = �1(integration) (dashed line). Both triplets
tend to the correct value of 1/m = 0.5 al high values of VG.
VT ¼VG�
ða�1Þ Iða�1Þ2

D

IðaÞD Iða�2Þ
D

�ða�2Þ

Iða�1Þ2
D

IðaÞ
D

Iða�2Þ
D

�1
�aþ1

0
BB@

1
CCA Iða�1Þ

D

IðaÞD

; for VG >>VT :

ð32Þ

Fig. 7 shows two examples of the application of Eq. (32) to the
synthetic characteristics shown in Fig. 1, as calculated using differ-
entiation (a triplet with a = 2), and integration (a triplet with
a = �1). In both cases the resulting auxiliary function tend to the
expected value of VT = 1 at high VG values.
7.3. Choosing the successive operator order

In principle we are at liberty of arbitrarily choosing the largest
operator order a in the triplet, since theoretically no particular
triplet offers advantages over another. However, this is not the case
once we recall that the actual operations to be carried out (deriva-
tives and/or integrals) are numerical calculations that must be per-
formed in real practice within the terms imposed by
experimentally measured data. Therefore, the question of the best
choice for triplet maximum order remains relevant.

Considering actual practical implementation, there are essen-
tially two criteria to consider for maximum order selection. The
first concerns computational efficiency and obviously translates
into a recommendation to perform the least number of operations
(numerical computations) possible. Hence, the best choice would
be any successive operator triplet that contains the function itself
(a = 0, ID

(0)), because that way only two numerical computations
would be required. There are three such possible triplets: those
whose maximum operator order is a = 0, 1 or 2. These values of
a correspond to triplets: (�2,�1,0) with only two integrations;
(�1,0,1) with one integration and one differentiation; and
(0,1,2) with two differentiations.

A second criterion for selecting a triplet’s maximum operator
order involves the issue of data noise. Experience suggests that
raw measured data likely contains significant measurement noise,
especially at low gate voltages. Since differentiation would
enhance noise, most likely also increasing the extraction error,
direct differentiation of raw noisy transfer characteristics should
be avoided. Therefore, additional data smoothing operations must
be necessarily included in the procedure if numerical differentia-
tion is contemplated. In any event, from a noise reduction point
of view it would be generally advisable to try to reduce, or
Fig. 7. Two examples of extracting VT by applying (32) to the same synthetic
characteristics of the device of Fig. 1, calculated using a = 2 (differentiation)
(continuous line) and a = �1(integration) (dashed line). Both curves tend to the
correct value of VT = 1 V al high values of VG.



Fig. 8. Measured transfer characteristics of a PolySi NW MOSFET in the linear
region (square symbols) and model playback (solid lines) calculated using (6) with
the extracted parameter values indicated within the figure.

Fig. 9. Transconductance-to-Current Ratio (vthTCR) (thin blue line) and inverse vth/
H1 function (thick red line) of a PolySi NW MOSFET transfer characteristics
measured at VD = 50 mV, shown in Fig. 8, as numerically calculated using (16) and
(19). According to (18) or (21) the below-VT low VG asymptote yields the value of 1/
n. In spite of the large noise present, it is still possible to estimate that the curves
tend to about 0.175, which means that n � 5.7, equivalent to SS = 340 mV/dec at
T = 300 K. It is obvious that using vth/H1 instead of vthTCR greatly reduces the
extraction uncertainty due to noise. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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altogether avoid, operators of order a > 0. And since, on the other
hand, integration inherently reduces noise without additional data
smoothing operations, from the same point of view it would be
generally advisable to try to use operators of order a < 0. Hence,
the best alternative according to this criterion seems to be the
use of three successive integral operators. Setting the triplet’s max-
imum order to a = �1 results in triplet (�3,�2,�1), which corre-
sponds to using the first three successive integral operators ID

(�1),
ID

(�2) and ID
(�3).

Notwithstanding the above, whenever the available data is not
particularly noisy, such as when dealing with synthetic character-
istics or previously smoothed measured data, the noise-reduction
criterion for operator order choice could be ignored altogether. In
such cases a good option to minimize the numerical computational
burden would be setting the maximum operator order to a = 2,
resulting in triplet (0,1,2), which corresponds to using the original
function ID

(0) together with its first ID
(1) and second ID

(2) successive
derivatives.
Fig. 10. 1/(vthTCR) (thin blue line) and H1/vth (thick red line) of a PolySi NW MOSFET
transfer characteristics measured at VD = 50 mV, shown in Fig. 8, as numerically
calculated using (16) and (19). According to (17) or (20) the slope of the above-
threshold high VG asymptote gives the value of 1/m or 1/(m + 1) and its extrapolated
VG axis intercept gives VT. In spite of the large noise present, it is still possible to
estimate m � 1.54, and VT � 1.15 V from the high VG asymptote of H1 (dash black
line). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
8. Examples of extraction from real device transfer
characteristics

We illustrate now the use of some of the extraction procedures
by applying them to the transfer characteristics of an experimental
PolySi NW MOSFET measured in the linear regions at VD = 50 mV,
as shown in Fig. 8. This device was previously modeled by us using
a different LambertW function-based model [38,45], but will now
assume here that the measured transfer characteristics of this
device can also be adequately described by the presently proposed
simple polylogarithmic model given by (1). Therefore, here we will
attempt to extract this model’s four basic parameters: n, m, VT and
K, by applying some of the already discussed extraction procedures
to this device’s transfer characteristics shown in Fig. 8.
8.1. Using successive operator ratios

The Transconductance-to-Current Ratio (TCR) is obtained by
setting a = 1 in (12) to yield expression (16). Fig. 9 presents the
result of numerically calculating the vthTCR from the data of this
experimental device, shown in Fig. 8. According to (18) we should
be able to extract the value of n from the low voltage asymptote of
the below-threshold vthTCR curve shown in Fig. 9. However, with-
out attempting any smoothing scheme of the raw measured data, it
seems in this particular case that the noise present is sufficiently
high to obscure the extraction of n from that region.
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Instead of the vthTCR, we could use the vth/H1 function, obtained
by setting a = 0 in (12) to yield expression (20). Fig. 9 also presents
the result of numerically calculating vth/H1 from the data of this
experimental device, shown in Fig. 8. According to (21) we should
be able to extract the value of n from the low voltage asymptote of
vth/H1 shown in Fig. 9.

Unfortunately, even using the vth/H1 curve, the considerable
noise present at low VG below-VT in this experimental device only
allows us to get from Fig. 9 a very rough estimate of the value of 1/
n � 0.175, corresponding to n � 5.7, which represents an SS = nvth

ln(10) � 340 mV/dec, at standard T = 300 K (vth = 0.0259 V).
Fig. 10 presents the reciprocals of the two functions presented

in Fig. 9, that is, 1/(vthTCR) and H1/vth as calculated from the trans-
fer characteristics measured at VD = 50 mV, shown in Fig. 8.
According to (17) or (20) the slopes of the above-VT asymptotes
at high VG yields the values of 1/m or 1/(m + 1), respectively, and
their extrapolations to the VG axis yields the value of VT. We
Fig. 11. Evolution of m and VT as functions of gate voltage, for the PolySi NW
MOSFET transfer characteristics measured at VD = 50 mV, shown in Fig. 8. An
integration-only successive operator triplet with a = 0 was used for calculating 1/m
with (28).

Table 2
Classification of successive differentiation and integration-based techniques for MOSFET mo

Parameter intended to be extracted Type of technique

Single operator (order)

Zero First H

Sub-threshold n X
Threshold voltage VT (Extrapolated) X X
Threshold voltage VT (Transition) X X
Supra-threshold m
observe that the large noise present precludes the use of the differ-
entiation based auxiliary function 1/(vthTCR).

However, it is still possible to use the H1/vth high VG asymptote
to estimate m � 1.54, and VT � 1.15V. This example clearly illus-
trates that using H1/vth instead of 1/(vthTCR) greatly reduces the
extraction uncertainty that arises from measurement noise.

We could also extract a transition type value of VT from the low
VG regions of vthTCR and vth/H1 graphs in Fig. 9. According to (24), VT

is the location on the VG axis corresponding to a given fraction of
either functions’ maximum measured at low VG. Calculating that
fraction of the maximum of vthTCR or vth/H1 in Fig. 9 for a value
of m � 1.54 using (24), the fractions corresponds in either case to
a value of VT �1.15V.

The value of the specific current parameter K is finally extracted
by back substitution into the model equation. With the already
extracted three basic parameters n, m, and VT , the fourth, K, is cal-
culated to be in this example: K � 0.964 nA.

8.2. Using successive operator triplets

Monomial order m and threshold voltage VT may also be
extracted using the direct formulas given by expressions (28) and
(32) respectively. Fig. 11 presents m and VT, as functions of gate
voltage for VG� VT, setting a = 0 in (28) to use an integration-only
successive operator triplet. The value of K shown in Fig. 11 was cal-
culated by back substitution and used together with the other
already extracted three parameters n, m, and VT to generate the
model playback shown in Fig. 8 superimposed on the originally
measured data. Notice in Fig. 11 the constancy of K above threshold.

9. Classification of successive operator methods

The generalized auxiliary functions described and discussed
here represent only some examples of how successive differential
and integral operators, their ratios, and other combinations
thereof, may be advantageously used for the important task of
MOSFET model parameter extraction. Conceivably, other proce-
dures could be similarly assembled to extract model parameters
on the basis of other combinations of appropriate operators, oper-
ator ratios, operator triplets, and ultimately by back substitution
into the original model. The diversity of MOSFET model parameter
extraction applications that are presently available utilizing
successive differentiation and integration is portrayed in Table 2.

Notice that Table 2 includes two rows corresponding to two
conceptually different threshold voltage parameters, referring to
the value extracted by extrapolation and that extracted from the
threshold transition region itself. The specific current parameter
K is not shown in Table 2 because it is usually extracted by back
substitution in a final procedural step.

Different extraction procedures frequently yield different val-
ues of the model parameters of a given assumed model. The accu-
racy of the extracted values is highly dependent upon the following
principal factors: (a) the appropriateness of the assumed model to
satisfactory describe the transfer characteristics being analyzed,
del parameter extraction, according to the model parameter intended to be extracted.

Operator ratio Operator triplet

igher Differential Integral

X X X
X X X
X X
X X X
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(b) the adequacy of the extraction procedure chosen to isolate the
parameter being sought in the assumed model, (c) the validity of
the assumptions presumed to hold by the extraction procedure
to be applied, (d) the nature of the actual numerical calculation
methods used, including the noise-canceling algorithms.

Nevertheless, even when the extracted parameter values may
not be considered to be exact and uniquely defined quantities,
most extracted parameters, regardless of the particular extraction
scheme used, would still be useful as coarse indicators of the MOS-
FET’s performance, because any extracted parameter is likely to
exhibit a generally correct correlation with the device’s structural
characteristics and underlying physical phenomena.

10. Conclusions

We have presented a unified comparative analysis of how succes-
sive differential and integral operators are used in procedures to
extract MOSFET model parameters. The analysis was based on
assessing the ability of the operators, their ratios and other combina-
tions to extract the basic model parameters of a simple minimalist
four-parameter empiric model of MOSFET transfer characteristics.

The model is a novel mathematical description of drain current
continuously from depletion to strong inversion, based on a poly-
logarithm function of gate voltage. This model’s exponential- and
monomial-type low and high gate voltage asymptotes, respec-
tively, are used for extraction since they describe reasonable well
the general below- and above-threshold drain current behavior
of MOSFETs. Although monomial-type descriptions of strong inver-
sion behavior have been traditionally reserved for non-crystalline
MOSFETs, for the sake of the present comparative analysis, we have
extended monomial portrayal to other types of FETs as a suffi-
ciently adequate way for describing their above-threshold behav-
ior. The use of this concise model has allowed us to analyze and
compare in a consistent manner the existing most significant and
better known extraction schemes that are based on successive dif-
ferential and integral operators and their ratios.

Additionally, we have explored other potentially promising
extraction ideas that go beyond the simple use of successive oper-
ators and their ratios. We have briefly discussed the choice of suc-
cessive operator order from the perspective of computational
efficiency and noise reduction. Finally, we have illustrated with
real examples the application of some successive operator-based
procedures to extract the basic model parameters from measured
transfer characteristics of experimental PolySi NW MOSFETs.

The joint parallel depiction of differential and integral operators
and their ratios that we have presented here provides a singular
systematic overview of their use in existing model parameter
extraction procedures. This type of vision facilitates conceiving
other combinations that may result useful in the future.
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Appendix A

Some characteristics of the polylogarithm function pertaining
to this work [33].

A.1. Definitions

The polylogarithm is a special function defined for any arbitrary
order m as the infinite power series:
Lim zð Þ ¼
X1
k¼1

k�mzk; ðA1:1Þ

which is valid for all |z| < 1, but can be extended for |z| P 1 by ana-
lytic continuation.

The polylogarithm may also be expressed in terms of the
integral:

Lim zð Þ ¼ 1
C mð Þ

Z 1

0

tm�1

et

z � 1
dt: ðA1:2Þ

Letting z ¼ �eu : �Lim �euð Þ ¼ � 1
C mð Þ

Z 1

0

tm�1

et�u þ 1
dt; ðA1:3Þ

The integrand of (A1.3) is the Fermi–Dirac distribution. Thus we
may write:

�Lim �euð Þ ¼ Fm�1 uð Þ; ðA1:4Þ

where Fm�1(u) is the complete Fermi–Dirac integral of order m � 1.

A.2. The polylogarithm in terms of elementary functions

When the order of the polylogarithm is an integer m 6 1, it may
be expressed in terms of elementary functions:

For m ¼ �2 : Li�2 zð Þ ¼ z2 þ z

1� zð Þ3
: ðA2:1Þ

Letting z ¼ �eu : �Li�2 �euð Þ ¼ eu � e2u

1þ euð Þ3
: ðA2:2Þ

Notice that the above function vanishes when u = 0 (the argu-
ment becomes �1):

�Li�2 �euð Þju¼0 ¼ �Li�2 �1ð Þ ¼ 0: ðA2:3Þ

For m ¼ �1 : Li�1 zð Þ ¼ z

1� zð Þ2
: ðA2:4Þ

Letting z ¼ �eu : �Li�1 �euð Þ ¼ eu

1þ euð Þ2
: ðA2:5Þ

For m ¼ 0 : Li0 zð Þ ¼ z
1� z

: ðA2:6Þ

Letting z ¼ �eu : �Li0 �euð Þ ¼ 1
e�u þ 1

: ðA2:7Þ

For m ¼ 1 : Li1 zð Þ ¼ � ln 1� zð Þ: ðA2:8Þ

Letting z ¼ �eu : �Li1 �euð Þ ¼ ln 1þ euð Þ: ðA2:9Þ

Notice that the expression corresponding to m = 1 defined in
(A2.8) by elementary functions tends asymptotically to eu for val-
ues of u� 0 and to u for values of u� 0. Because of this distinctive
attribute, it has been frequently used in electron device modeling
applications to portray a phenomenological transition at u = 0 from
an exponential-like behavior to a linear-like behavior [74,75].

A.3. Derivatives of the polylogarithm

@Lim zð Þ
@z

¼ 1
z

Lim�1 zð Þ: ðA3:1Þ

Let z ¼ f ðuÞ @Lim f ðuÞð Þ
@u

¼ 1
f ðuÞ

@f ðuÞ
@u

Lim�1 f ðuÞð Þ: ðA3:2Þ

Letting f ðuÞ ¼ �eu :
@Lim �euð Þ

@u
¼ Lim�1 �euð Þ: ðA3:3Þ
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A.4. Some particular values of the polylogarithm

Values of the polylogarithm of argument z = �1 for different
values of its order m:

For m ¼ �2 Li�2 �1ð Þ ¼ 0: ðA4:1Þ

For m ¼ 1 Li1 �1ð Þ ¼ � ln 2ð Þ: ðA4:2Þ

For m > 1 Lim �1ð Þ ¼ �g mð Þ ¼ 21�m � 1
� �

f mð Þ; ðA4:3Þ

where g(�) is the Eta function and f(�) is the Riemann Zeta function
[51].
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