# Development of General Purpose Low-power Small-area 10 bit CMOS DAC

### D. Przyborowski, M. Idzik

AGH – University of Science and Technology Department of Physics and Applied Computer Science

June 12, 2009

## Design of 10b Low–Power Small–Area Current–Steering DAC.

- Specifications
- Circuit Design.
- Layout

## 2 Measurements of 1<sup>st</sup> Prototype

- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs

# 3 Summary

# Design of 10b Low–Power Small–Area Current–Steering DAC. Specifications

- Circuit Design.
- Layout

## 2 Measurements of 1<sup>st</sup> Prototype

- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs

# 3 Summary

• • = • • =

## Design of 10b Low–Power Small–Area Current–Steering DAC. Specification

### Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 mW.
- Small area.

### Considered architectures:

- Current steering.
- Resistors ladder.

### Chosen architecture:

 Current steering – matching of MOS better than resistors for given technology.



# Design of 10b Low–Power Small–Area Current–Steering DAC. Specifications

- Circuit Design.
- Layout
- 2 Measurements of 1<sup>st</sup> Prototype
  - Static Measurements
  - Power Measurements
  - Transient Measurements
  - Comparison with other low-power 10 bit DACs

# 3 Summary

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### Design of 10b Low–Power Small–Area Current–Steering DAC. Circuit Design.



## Design of 10b Low–Power Small–Area Current–Steering DAC. 9 bit Current Sources Array.

### Matching formulas

$$\delta I_{MSB} \le rac{1}{3} \cdot 2^{-9} \cdot 100\% = 0.065\%$$

$$\mathcal{N} \cdot L \geq rac{1}{\sigma^2(I_D)} \cdot \left[ \mathcal{A}_{eta}^2 + \left( rac{2 \cdot \mathcal{A}_{V_{th}}}{V_{ov}} \cdot 100\% 
ight)^2 
ight]^2$$

### Choice of transistors size:

- Assumed LSB current = 100[nA]
- Assumed current source overdrive voltage  $\geq 500[mV]$
- Chosen transistor type PMOS
- Chosen W/L unit transistor ratio 1/80 ( $V_{ov} = 637[mV]$ )
- Calculated unit current source dimensions  $W/L=0.5\mu/40\mu$

・ロト ・ 同ト ・ ヨト ・ ヨト

Design of 10b Low–Power Small–Area Current–Steering DAC. Current Source Array with Active Cascodes Stage.



9 bit current output DAC

# Design of 10b Low–Power Small–Area Current–Steering DAC. High Swing Output Stage Including Current Mirror Sink.





## Design of 10b Low–Power Small–Area Current–Steering DAC. Amplifiers used in DAC

### Two types of amplifiers were used:

- 6 single stage OTAs in active cascode stages and biasing.
  - Architecture folded cascode.
  - Power consumption 3.5 25  $\mu W$ .
  - Open loop Gain 60 88 dB.
  - Gain × Bandwidth (GBW) 1 7 MHz.
  - Phase Margin  $> 70^{\circ}$ .
- One two stage class AB operational amplifier for output current-to-voltage converter.
  - Power consumption 60  $\mu W$  (quiscent power).
  - Open loop gain 115 dB (quiscent load current)
  - GBW 2 MHz
  - Phase Margin > 75°.

・ロト ・ 同ト ・ ヨト ・ ヨト

# Design of 10b Low–Power Small–Area Current–Steering DAC. Class AB Operational Amplifier





## Design of 10b Low–Power Small–Area Current–Steering DAC.

- Specifications
- Circuit Design.

### Layout

- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs

• • = • • =

# Layout of 1<sup>st</sup> prototype.



### DAC core dimensions – $295 \times 595 \mu m$ .

D. Przyborowski, M. Idzik General Purpose Low-power Small-area 10b CMOS DAC

 </l



### Design of 10b Low–Power Small–Area Current–Steering DAC.

- Specifications
- Circuit Design.
- Layout

# 2 Measurements of 1<sup>st</sup> Prototype

### Static Measurements

- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs

# 3 Summary

• • = • • =

Static Power Transient DACs Comparison





( ) < ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) <

DAC Design Measurements Summary

Static Power Transient DACs Comparison

# Measurements of 1<sup>st</sup> Prototype Integral (INL) and differential (DNL) nonlinearities.





### Design of 10b Low–Power Small–Area Current–Steering DAC.

- Specifications
- Circuit Design.
- Layout

# 2 Measurements of 1<sup>st</sup> Prototype

- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs

# 3 Summary

A B A A B

### Measurements of 1<sup>st</sup> Prototype Power Measurements





### Design of 10b Low–Power Small–Area Current–Steering DAC.

- Specifications
- Circuit Design.
- Layout

## 2 Measurements of 1<sup>st</sup> Prototype

- Static Measurements
- Power Measurements

### • Transient Measurements

• Comparison with other low-power 10 bit DACs

# 3 Summary

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Static Power Transient DACs Comparison







### Design of 10b Low–Power Small–Area Current–Steering DAC.

- Specifications
- Circuit Design.
- Layout

# 2 Measurements of 1<sup>st</sup> Prototype

- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs

# 3 Summary

→ Ξ →



# Comparison with other low-power 10 bit DACs

|                            | 1                    | 2                 | 3                      | 4                     | This work                  |
|----------------------------|----------------------|-------------------|------------------------|-----------------------|----------------------------|
| archit.                    | current<br>steering  | R–2R<br>ladder    | resistor<br>ladder     | resistor<br>string    | current<br>steering        |
| tech.                      | 0.35 μm<br>CMOS      | 0.18 μm<br>CMOS   | 0.35 μm<br>CMOS        | 0.13 μm<br>CMOS       | 0.35 μm<br>CMOS            |
| power<br>[mW]              | <b>≤ 7.8</b>         | 4                 | 0.07<br>(analog part)  | 0.5                   | $\leq$ 0.6                 |
| area<br>[mm <sup>2</sup> ] | 0.23                 | 0.01              | 0.022                  | 0.18                  | 0.18                       |
| max INL<br>[LSB]           | 0.2                  | 0.75              | 0.7                    | 2.0                   | 0.6                        |
| max DNL<br>[LSB]           | 0.2                  | 0.7               | 0.35                   | 0.5                   | 0.8                        |
| speed                      | upd. rate<br>30 MS/s | low<br>freq.      | set. time<br>3 µs/10pF | upd. rate<br>2MS/s    | set. time $0.5 - 2[\mu s]$ |
| output<br>type             | current<br>≤2.5mA    | current<br><2.2mA | voltage<br>no buffer   | voltage<br>high–swing | voltage<br>high–swing      |

- 1 M. Borremans, A. Van den Bosch, M. Steyeart, W. Sansen, A low power 10-bit CMOS D/A converter for high speed applications, IEEE 2001 custom integrated circuits conference.
- 2 B. Greenlay, R. Veith, Dong-Young Chang, Un-Ku Moon, A low-voltage 10-bit CMOS DAC in 0.01-mm<sup>2</sup> die area, IEEE Transactions on Circuits and Systems, vol. 52, no 5, 2005.
- 3 Y. Perelman, R. Ginosar, *A low-power inverted ladder D/A converter*, IEEE Transactions on Circuits and Systems, vol. 53, no 6, 2006.
- 4 F. Ge, M. Trivedi, B. Thomas, W. Jiang, H. Song, 1.5V 0.5mW 2MSPS 10B DAC with rail-to-rail output in 0.13μm CMOS technology, SOC Conference, 2008 IEEE International.

# Summary

- 1<sup>st</sup> prototype of 10 bit DAC is fully functional.
- Measurements results are generally in good agreement with simulations:
  - Low power consumption < 0.6 mW.
  - Small area  $0.295 \times 0.595 \text{ mm}^2 = 0.176 \text{ mm}^2$
  - Integral Non–Linearity ( $|INL_{max}|$ )  $\simeq 0.6$  [LSB].
  - Differential Non–Linearity  $(|DNL_{max}|) \simeq 0.8$  [LSB] higher than expected, attributed to current source matrix layout.
  - Settling time =  $0.5 2 \ \mu s$ .
- Improved design is completed and ready for submission.